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Foreword

Astronomy and biomedical sciences find common roots in their
need to process acquired data into interpretable signals or
images. In these applications of signal processing as for virtually
all others, the complexity of data to be acquired and processed is
constantly increasing, thus challenging signal processing theories.
Data indeed come in larger volumes every day, can be multi-
modal (referring to multiple imaging modalities), multi-spectral
(referring to multiple imaging frequencies), scalar or tensor-valued
(as polarization signals), living in high dimensional geometries,
possibly non-Euclidean or discrete (as signals on the sphere or on
graphs), etc.

As matter of fact, the astronomical and biomedical sciences
communities are almost completely disconnected. Fostering
contact and creating collaborations between these communities
can shed new light on the problems of interest in each community
and promote common research approaches for similar signal
processing issues, thereby paving the way to new scientific ad-
vances. The international BASP Frontiers workshop was created
to promote synergies between selected topics in theoretical,
astronomical, and biomedical signal processing.

BASP Frontiers 2013 will take place in a very nice resort
in the Swiss Alps named Villars-sur-Ollon, close to Lausanne and
Lake Geneva. Everyone knows that the most fruitful discussions
often take place after the sessions themselves, on the terrace, or
during breakfast, lunch, or dinner. The winter atmosphere will
further promote discussion and creativity.

Yves Wiaux & Jason McEwen
Workshop Chairs
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Higgs within reach: our understanging of the universe is about
to change.
Michael A.Parker∗,

∗ Cavendish Laboratory University of Cambridge Cambridge CB3 0HE UK.

Abstract—We discuss the recent discovery of a Higgs-like boson at
the Large Hadron Collider at CERN, and its implications for our
understanding of the Standard Model of particles and fields.

The recent discovery of a new particle, consistent with the much
sought Higgs boson marks a breakthrough in our understanding of
the physical universe. Such a particle was first predicted in 1964,
and plays a central part in the symmetry breaking mechanism which
underlies the Standard Model of particles and their interactions. The
theoretical motivation for the Higgs prediction, and its role in the
Standard Model will be discussed.

The signal was discovered at the Large Hadron Collider in the
presence of very high rates of background processes, using the
advanced general purpose particle detectors built by the ATLAS
and CMS collaborations. The detection systems and data reduction
methods will be described. These use a variety of techniques to
characterise the outgoing particles, allowing decay products con-
sistent with those expected from the Higgs to be identified. The
data reduction requires real-time processing in the detector front-end
electronics and filtering in farms of processors before data storage.
Massive distributed computing infrastructure has been deployed as a
world-wide ”Grid” to enable the collaborating scientists to analyse
the multiple petabyte data samples.

The evidence for the new particle will be presented and open
questions about its compatibility with the Standard Model predictions
will be presented. The issue of the stability of the Higgs mass raises
questions about potential new physics in the TeV energy range. Some
current searches for such phenomena will be described.
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A convex optimization approach for image recovery from
nonlinear measurements in optical interferometry

Anna Aurı́a∗, Rafael E. Carrillo∗, and Yves Wiaux∗†‡
∗ Institute of Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
† Department of Radiology and Medical Informatics, University of Geneva (UniGE), CH-1211 Geneva, Switzerland

‡ Department of Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland.

Abstract—Image recovery in optical interferometry is an ill-posed
nonlinear inverse problem arising from incomplete power spectrum
and bi-spectrum measurements. We formulate a linear version of the
problem for the order-3 tensor formed by the tensor product of the
signal with itself. This linear problem is regularized by standard convex
`1−relaxations of sparsity and low rank constraints and solved using the
most advanced algorithms in convex optimization. We show preliminary
results on small size synthetic images as a proof of concept.

Interferometry is a unique tool to image the sky at otherwise
inaccessible resolutions. The set of visibilities measured provides an
incomplete Fourier coverage of the brightness intensity as a function
of angular direction, in vector form x ∈ RN with components xi.
However, at optical wavelengths, the phase of the complex visibilities
is affected by atmospheric turbulence. The measurable quantities
are power spectrum data |x̂i|2, and phases associated with the bi-
spectrum x̂i · x̂j · x̂k [1]. This poses a nonlinear inverse problem for
image reconstruction, which is sensitive to the optimization strategy.

Generalizing the Phase Lift approach [2], we formulate a linear ver-
sion of the problem for the order-3 tensor X = x⊗x⊗x ∈ RN×N×N

with components Xijk, which arises from the tensor product of
the signal with itself. The total flux is measured independently
and we consider a normalized signal such that

∑
i xi = x̂0 = 1,

x̂0 representing the zero-frequency. Thus, the linear measurement
model y = A(X ) ∈ CM encompasses both power spectrum and bi-
spectrum measurements, for a measurement operator A defined as a
selection operator after Fourier transform along all tensor dimensions.

In this setting, prior information is essential to regularize the ill-
posed inverse problem in the perspective of image reconstruction.
Firstly, we adopt a sparsity prior on the tensor to acknowledge some
signal sparsity K � N . While `0−minimization would promote
sparsity explicitly we adopt the common `1−convex relaxation.
Secondly, convex reality and positivity constraints are also enforced
to acknowledge the fact that we deal with intensity images. Thirdly,
in order to counter-balance the large increase of dimensionality when
solving for X instead of x, we rely explicitly on the fact that X
is formed by the tensor product of x, whose components sum to
unity, so that summations over one or two indices respectively lead
to the order-2 tensor C(X ) = x ⊗ x ∈ RN×N , and to the signal x
itself. We enforce the semi-definite positivity of C(X ) and its rank-
1 structure by resorting to nuclear norm minimization. The nuclear
norm of an order-2 tensor is defined as the `1−norm of its singular
values vector. Its minimization should be understood as the convex
relaxation of the minimization of the rank function counting the
number of singular values. Finally, we also resort to a re-weighting
scheme consisting in approaching both `0−minimization on X and
rank minimization on C(X ) by solving a sequence of weighted `1
and nuclear norm minimizations, each initialized to the solution of the
previous problem. The fundamental symmetry of the tensor X over
index permutation is also enforced by ensuring that any operation
performed preserves the symmetry. The weighted `1 and nuclear

norm minimization problem thus reads as:

min
X
||C(X )||W∗ + λ||X ||W1 such that ||y −A(X )||2 ≤ ε,

and C(X ) � 0,X ≥ 0, (1)

where the symbols || · ||W∗ and || · ||W1 respectively denote weighted
nuclear and `1 norms. In the weighted nuclear norm, the singular
values of C(X ) are essentially divided by their value at the previous
iteration, in order to approximate the rank function. In the weighted
`1−norm, each tensor component Xijk is essentially divided by
some robust estimation of its value from the previous iteration, in
order to promote `0−minimization. This estimation is obtained by
symmetrized sums over two dimensions in order to promote structure
in the tensor sparsity. In the first iteration, no weighting is applied.
A non-weighted `1−norm is not a meaningful prior function as the
tensor values sum to unity. We thus set λ = 0 at the first iteration.

We solve this complex problem taking advantage of the versatility
of convex optimization, using a combination of the Douglas-Rachford
and dual forward-backward algorithms. The solution is low rank
and we extract x as the principal eigenvector of C(X ). We want to
highlight the fact that in this framework the results do not depend
on the initialization of the algorithm, in stark contrast with common
non-convex approaches.

Figure 1 shows an example of reconstruction of a 16×16 synthetic
image from M = 0.75N measurements affected by 30dB of input
noise, along with a phase transition diagram for random 8×8 images,
representing the probability of good reconstruction in the sparsity-
undersampling plane in a noiseless setting. In both cases equal
numbers of random power and bi-spectrum data are considered.

Figure 1. Left and centre: 16 × 16 image and reconstruction with M =
0.75N : SNR= 37.2dB. Right: phase transition diagram for 8× 8 images.

The principal drawback of this approach is the dimension of the
problem, leading to computation time and memory requirements
issues. Advanced algorithmic, coding and hardware solutions need
to be investigated in this perspective.

REFERENCES

[1] E. Thiébaut and J. Giovanelli, “Image reconstruction in optical interfer-
ometry,” IEEE Signal Processing Magazine, vol. 21, pp. 97–109, 2010.

[2] E. Candès, T. Strohmer, and V. Voroninski, “Phaselift: Exact and stable
signal recovery from magnitude measurements via convex programming,”
Communications on Pure and Applied Mathematics, 2011, preprint in
arXiv:1109.4499v1.
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Large-scale convex optimization for machine learning

Francis Bach∗
∗ INRIA - Sierra Project-team Département d’Informatique de l’Ecole Normale Supérieure Paris, France

Abstract—Many machine learning and signal processing problems are
traditionally cast as convex optimization problems. A common difficulty
in solving these problems is the size of the data, where thereare many
observations (”large n”) and each of these is large (”large p”). In this
setting, online algorithms which pass over the data only once, are usually
preferred over batch algorithms, which require multiple passes over the
data. In this talk, I will present several recent results, showing that in the
ideal infinite-data setting, online learning algorithms based on stochastic
approximation should be preferred, but that in the practical finite-data
setting, an appropriate combination of batch and online algorithms leads
to unexpected behaviors, such as a linear convergence rate with an
iteration cost similar to stochastic gradient descent. (joint work with
Nicolas Le Roux, Eric Moulines and Mark Schmidt)
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Video Compressive Sensing
Richard Baraniuk∗, Aswin Sankaranarayanan∗, Christoph Studer∗ and Thomas Goldstein∗

∗ Rice University

Sensing and imaging systems are under increasing pressure to
accommodate ever larger and higher-dimensional data sets; ever faster
capture, sampling, and processing rates; ever lower power consump-
tion; communication over ever more difficult channels; and radically
new sensing modalities. Since its discovery in 2004, compressive
sensing (CS) has stimulated a re-thinking of sensor and signal
processing system design. In CS, analog signals are digitized and
processed not via uniform sampling but via measurements using more
general, even random, test functions. In contrast with conventional
wisdom, the new theory asserts that one can combine “sub-Nyquist-
rate sampling” with large-scale optimization for efficient and accurate
signal acquisition when the signal has a sparse structure. In this talk,
we will review the progress in field over the last 8 years, with a
special emphasis on the pros and cons of the technique and on sensing
ephemeral signals such as videos.

For video CS, we focus on spatial-multiplexing cameras (SMCs)
that sample a scene through a series of coded projections using
a spatial light modulator and a few optical sensor elements. SMC
architectures are particularly useful when imaging at wavelengths for
which full-frame sensors are too cumbersome or expensive. While
existing CS recovery algorithms for SMCs perform well for static
images, they typically fail for time-varying scenes (videos). We will
overview a new CS MUlti-scale VIdeo (CS-MUVI) sensing and
recovery framework for SMCs. The framework features a co-designed
video CS sensing matrix and recovery algorithm that provide an ef-
ficiently computable low-resolution video preview. We then estimate
the scenes optical flow from the video preview and feed it into a
convex optimization algorithm to recover the high-resolution video.
In Fig. 1 we illustrate the performance of CS-MUVI as compared to
a more conventional sliding window-based recovery video recovery
technique. Even at a 64x measurement compression ratio, CS-MUVI
is able to render the fine details of the scene.

(a) One frame from a target high-speed
video sequence

(b) CS-MUVI recovery using 64x fewer
measurements than voxels in target video

(c) Sliding window CS recovery using 64x
fewer measurements than voxels in target
video

Fig. 1. Performance of CS-MUVI as compared to a more conventional
sliding window-based recovery video recovery technique.
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Sparse Sampling in Phase Space: Theory and Applications
Ayush Bhandari∗ (ayush@MIT.edu)

∗ Massachusetts Institute of Technology, 75 Amherst St, Cambridge, MA 02139, USA

Abstract—The question that we seek to answer is: Given a continuous
time sparse signal (in primal domain), is it possible to sample and recon-
struct this sparse signal based on its characterization in a dual domain—
the one which generalizes a number of already known transformations?

Phase Space transformations like the Linear Canonical Transform
parametrically generalize a number of interesting transformations includ-
ing the Fourier, Fresnel and fractional Fourier Transform among others.
In this work, we develop a sampling and reconstruction methodology for
sampling a sparse signal by analyzing their properties in Phase Space
which is backward compatibe with several known transformations. This
problem, as will be seen, can be recast as a parameter estimation problem
that has its roots in Prony’s method.

Given the general scope of analysis of sparse signals in transform
domain, this work has applications in areas of spread spectrum methods
for imaging, phase retrieval and computational photography.

Phase Space transformations are theoretically appealing for they
generalize a number of existing transformations like the Fourier
transform among others. One such construction includes the case
of Linear Canonical Transform (LCT). The LCT (parametrized by
ΛΛΛ ≡

(
a b
c d

)
with ad − bc = 1) of a signal, say x(t), is given by

x̂ΛΛΛ (ω) = LCTΛΛΛ {x} or,

x̂ΛΛΛ (ω)
def
=

{
〈x (·) , φΛΛΛ (·, ω)〉 for b 6= 0,√
dej

1
2 (cdω2)x(dω) for b = 0,

(2)

where φΛΛΛ (·, ω) is the phase space kernel defined in (1) of Table I
and 〈g, h〉 denotes the inner-product in L2–sense. For ΛΛΛ ∈ R2, the
LCT is a unitary transformation and generalizes many transformations
(Table I). Results applicable to the LCT domain can easily be
extended to any of its special cases. The Fourier transform and the
FrFT are the most notable byproducts. The LCT is equipped with an
interesting composition property:

LCTΛΛΛ2 {LCTΛΛΛ1 {x}} = LCTΛΛΛ3 {x} ⇒ ΛΛΛ2 ·ΛΛΛ1 = ΛΛΛ3

that leads to the definition of inverse–LCT of function, which is
equivalent to x (t) = LCTΛΛΛ−1 {x̂ΛΛΛ} or,

x(t) =

{
〈x̂ΛΛΛ(·), φΛΛΛ−1 (t, ·)〉 for b 6= 0,
√
ae−j

1
2 (cat2)x(at) for b = 0,

(3)

where ΛΛΛ−1 is the inverse of ΛΛΛ. If x̃ (t) is the approximation of
x(t), then ‖x̃ (t)− x(t)‖2L2

= 0 whenever (ωmb) 6 ωs
2

(Nyquist
rate for LCT domain), where ωs is the sampling frequency. When
ΛΛΛFT =

(
0 1
−1 0

)
, all the aforementioned results take form of Shannon’s

sampling theorem. In this paper, we are interested in sampling a
stream of K Dirac impulses—a signal with structure:

x (t)
def
=
∑K−1

k=0
ckδ (t− tk), (4)

with weights and arbitrary shifts, {ck, tk}. By constructing an ape-
riodic version of Fourier Series expansion (cf. [1]) for LCT domain,
it turns out that (4) has a representation of form:

x (t) =
1

τ
e−j

a
2b
t2k

n=+∞∑

n=−∞



K−1∑

k=0

ck · ej
a
2b
t2k

︸ ︷︷ ︸
ak

e−jnω0tk︸ ︷︷ ︸
un
k




︸ ︷︷ ︸
p[n]—Sum of K–complex exponentials

ejnω0t. (5)

TABLE I
LCT AS A GENERALIZATION OF OTHER TRANSFORMATIONS

φΛΛΛ (t, ω) = 1√−j2πb exp
{
− j

2b

((
at2 + dω2

)
− 2ωt

)}
(1)

LCT Parameters (ΛΛΛ) Corresponding Transform
[

cos θ sin θ
− sin θ cos θ

]
= ΛΛΛθ Fractional Fourier Transform (FrFT)[

0 1
−1 0

]
= ΛΛΛFT Fourier Transform (FT)[

1 b
0 1

]
Fresnel Transform[ 1 b

 1

]
Bilateral Laplace Transform[

1 −b
0 1

]
, b ≥ 0 Gauss–Weierstrass Transform

1√
2

[
0 e−π/2

−e−π/2 1

]
Bargmann Transform

Discretizing (5) in m–points results in the following system:

x (m) ej
a
2b
m2

︸ ︷︷ ︸
x

=
1

τ

n=+∞∑

n=−∞

(
K−1∑

k=0

aku
n
k

)

︸ ︷︷ ︸
p

ejnω0m ⇔ x = Dm×n
DFT p

which is reminiscent of the problem tackled by Prony. For a full rank
system, D−1

DFTx yields p and then the parameters are estimated. In
what remains, we will recast this as a sampling problem [1] where
we use a pre-filter to sample (4) and reconstruct it using (5).

The finite–rate–of–innovation theory [2] is a special case of our
result (set Λ = Λθ). Similarly, our work has close connections
with Phase Retrieval problem of P. Jaming [3]. These ideas have
applications in computational imaging [4]. Given that the sparse
signal spectrum can be uniquely characterized in (5), the problem
of source separation of of bandlimited + impulsive signal (4) can be
efficiently tackled. This has applications in computational imaging
[5] as well as in mitigating impulsive noise [6]. The chirp–kernel of
LCT might explain the success of spread spectrum imaging method
of Wiaux et al. in [7]. In context of the recent results in line of
Mathematical Theory of Super–Resolution of Candes et al. [8], our
problem can be reformulated as an optimization problem (noisy case).
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Abstract—We consider the problem of calibrating a compressed sensing
measurement system under the assumption that the decalibration consists
of unknown complex gains on each measure. We focus onblind calibra-
tion, using measures performed on a few unknown (but sparse)signals. In
the considered context, we study several sub-problems and show that they
can be formulated as convex optimization problems, which can be solved
easily using off-the-shelf algorithms. Numerical simulations demonstrate
the effectiveness of the approach even for highly uncalibrated measures,
when a sufficient number of (unknown, but sparse) calibrating signals is
provided.

I. I NTRODUCTION

We consider the blind calibration problem in a system with sensors
having effective unknown complex valued gain and a number of
unknown sparse training signals,xl ∈ CN , l = 1 . . . L. The
measured signal,yi,l ∈ C, in this system is modeled as

yi,l = die
jθim∗

i xl i = 1 . . . M .∗ : Conj. Transpose (1)

where mi ∈ CN are known sensor projection vectors,di ∈ R+

are unknown gain magnitude andθi ∈ [−π, π] are the unknown
phase shifts for each sensor. This problem can be simplified to 2
sub-problems for easier analysis.

II. GAIN CALIBRATION

For known phases, the calibration problem can be formulatedas a
convex optimization problem such that

xl,∗, ∆i,∗ = arg min x1,...,xL
∆1,...,∆M

L
X

l=1

‖xl‖1 (2)

subject to
M

X

i=1

∆i = c, ∆iyi,l = m∗
i xl,

l = 1 . . . L
i = 1 . . . M

wherec > 0 is an arbitrary constant and the resulting estimated gains
aredi,∗ = 1/∆i,∗. This optimization problem has been investigated
in [1]. The presented results show that, if there are sufficient number
of training signals, the calibration approach provides significantly
better performance than traditional recovery (by solving (2) with δi =
1, i = 1, . . . , M ) when the gain magnitudes have high variance.

III. PHASE CALIBRATION

For known gains, the calibration problem is reduced to estimating
the unknown phases. In case of single sparse training signal, this
problem is equivalent to the phase retrieval problem investigated
in [2]. When dealing with multiple sparse signals (xl ∈ ΣK ), we
propose to perform the calibration and signal estimation with the
semidefinite programming

X∗ = arg minX Tr(X) + λ‖X‖1 (3)

subject to X < 0, yi,ky∗
i,l = m∗

i Xk,lmi,
k, l = 1 . . . L
i = 1 . . . M

Xk,l ,xkx
∗
l ∈ CN×N , X ,

2

6

4

X1,1 · · · X1,L

...
...

XL,1 · · · XL,L

3

7

5

∈ CLN×LN

δ (M/N)

ρ 
(K

/M
)

 

 

K > N
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(b) L = 10

Fig. 1: The decorrelation,σI , between the source signal and the
estimated signal averaged over 10 randomly generated simulations
for variousρ and δ (σI(x1,x2) , 1 − |x∗

1x2|2
‖x1‖2

2‖x2‖2
2

). The Donoho-
Tanner phase transition curve is indicated with the white line.

which minimizes the rank and sparsity of the joint signal matrix X.
The resulting estimated signal,x∗ = [x∗

1 · · ·x∗
L]∗ is the eigenvector

of X that corresponds to the largest eigenvalue and the estimated
phase shifts,θi,∗, are easily computed givenx∗ and yi,l. Sample
simulation results comparing the joint optimization in (3)to the
independent optimization described in [2] can be seen in Figure 1,
which shows much higher correlation with the reconstructedsignal
for L = 10.

The talk will present further performance analysis of the proposed
method for phase calibration, and discuss methods combining the gain
and phase calibration approaches for calibration of complex valued
gains.
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Optimization for inverse problems with total generalized
variation regularization and applications in medical imaging
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Abstract—We present and study the concept of total generalized
variation for general symmetric tensor fields, in particular for the regu-
larization of ill-posed inverse imaging problems in terms of optimization
of Tikhonov functionals. Simple and efficient computational minimization
algorithms are introduced, applications and numerical experiments with
focus on medical imaging problems are reported.

I. INTRODUCTION

Since its introduction in [1], the total variation (TV) functional
TV(u) =

∫
Ω

d|∇u| has become a well-established model for images
and is often used as penalty functional for variational problems. One
reason for its attractivity lies in the fact the the underlying space, the
functions of bounded variation BV(Ω) allows for functions which
admit a certain smoothness on the one hand, but also may contain
jump discontinuities on the other hand. However, TV-regularization
tends to deliver solutions which suffer from the so-called “staircasing
effect”.

Several approaches have been proposed to overcome this prob-
lem. Here, we focus on the concept of total generalized variation
introduced in [2] which realizes a functional which is able to detect
higher-order smoothness while still accounting for discontinuities. We
study the natural generalization to symmetric tensor fields of order l:
For u ∈ L1

loc(Ω, Syml(Rd)), the total generalized variation (TGV)
of order k reads as

TGVk,l
α (u) = sup

{∫

Ω

u·divk v dx
∣∣∣ v ∈ Ckc (Ω, Symk+l(Rd)),

‖divi v‖∞ ≤ αi, i = 0, . . . , k − 1
}

(1)

where α = (α0, . . . , αk−1) is a vector of positive weights.

II. REGULARIZATION WITH TGV

In order to use TGVk,l
α as a regularization functional, its

functional-analytic properties have to be examined. Denoting by E
the symmetrized derivative, we establish the equivalence of the norms

‖u‖1 + TGVk,l
α (u) ∼ ‖u‖1 + ‖Eu‖M

implying that the underlying space for TGVk,l
α is the space of

symmetric tensor fields of bounded deformation BD(Ω, Syml(Rd)),
studied in [3]. This will also give the coercivity estimate

‖u−Ru‖d/(d−1) ≤ C TGVk,l
α (u) ∀u ∈ BD(Ω,Syml(Rd))

where R is a linear projection in Ld/(d−1)(Ω, Syml(Rd)) onto the
finite-dimensional space ker(Ek). This allows to regularize the linear
inverse problem Ku = f with TGV, i.e., to prove existence of
minimizers of the Tikhonov functional

min
u∈Lp(Ω,Syml(Rd))

1

2
‖Ku− f‖2 + TGVk,l

α (u) (2)

for 1 < p ≤ d/(d − 1) and K : Lp(Ω,Syml(Rd)) → H a linear
and continuous mapping with some Hilbert space data f ∈ H .

original NUFFT

TV TGV2

Fig. 1. Simulation results: Direct inversion (NUFFT), TV-regularization,
TGV-regularization for undersampled MRI (24 radial projections).

The optimization problem (2) can easily be discretized and refor-
mulated as an abstract saddle point problem

min
x

max
y
〈Ax, y〉+ F(x)− G(y)

where A is a linear operator and F , G are proper, convex and
lower semi-continuous functionals. Such problems can efficiently
be solved with the iterative primal-dual problem introduced in [4].
In each update step, the resulting algorithms perform only simple
computations such as linear operations and pointwise projections [5].

III. APPLICATIONS IN MEDICAL IMAGING

The computational optimization framework is then applied to three
problems in medical imaging: undersampling magnetic resonance
imaging (MRI) [6], reconstruction of diffusion-tensor imaging (DTI)
data [7] and denoising of dual-energy computed tomography (CT)
reconstructions. The numerical experiments, see, e.g. Fig. 1, confirm
the favorable effects of TGV-regularization as the absence of the stair-
casing effect as well as the awareness of higher-order smoothness.
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Learning Sparsifying Transforms
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Abstract—Analytical sparsifying transforms or dictionaries, such as
DCT, wavelets, curvelets, and finite differences have been used in many
applications in signal processing. Recently, attention has turned to
learning sparse signal representation that are directly adapted to data.
However, while there has been extensive research on learning synthesis
dictionaries and some recent work on learning analysis dictionaries,
the idea of learning sparsifying transforms has received no attention.
We describe a new formulation for data-driven learning of sparsifying
transforms, and illustrate its advantages.

The sparsity of signals and images in a certain transform domain
or dictionary has been exploited in many applications in signal and
image processing, including compression, denoising, and compressed
sensing. The following three alternative formulations have been
considered for modeling sparsity.

• Synthesis Dictionary: the data vector y is modeled as y ≈ Dx,
with matrix D being the synthesis dictionary, and x a sparse
vector.

• Analysis Dictionary: the data vector y is modeled as y ≈ q,
where Ωq = x, with matrix Ω being the analysis dictionary, and
x a sparse vector.

• Transform Model: the data vector y is modeled to satisfy
Wy ≈ x, with matrix W being the sparsifying transform, and
x a sparse vector.

Historically, the transform model appears to have been the first to be
used in signal and image processing, most notably in compression,
and has been prominent in past and present image compression
standards such as JPEG.

The various applications used sparsifying transforms or dictionaries
such as DCT, wavelets, curvelets, and finite differences, all of which
had a fixed, analytical form. Recently, sparse representations that
are directly adapted to the data have become popular, especially in
applications such as image denoising, inpainting, and medical image

reconstruction. However, while there has been extensive research on
learning synthesis dictionaries and some recent work on learning
analysis dictionaries, surprisingly the idea of learning sparsifying
transforms has received no attention.

In this talk, we describe novel problem formulations and algo-
rithms for learning sparsifying transforms from data. The formulation
provides full control over the conditioning of the learned transforms,
which are designed to be well-conditioned. The algorithms are shown
to provide monotonic convergence of the cost function, and are
insensitive to initialization. Moreover, on practical examples, their
computational cost is nearly two orders of magnitude lower than
that of synthesis dictionary learning algorithms such as K-SVD.
Extending the idea of transform learning, we consider doubly sparse
transforms, which are a product of a fixed, fast analytic transform
such as the DCT, and an adaptive matrix constrained to be sparse.
Such transforms can be learnt, stored, and implemented efficiently,
providing further acceleration of transform learning.

The learned transforms provide much lower sparsification errors
than analytical transforms. Results with natural images demonstrate
that well-conditioning (but not necessarily unit conditioning) of
the transforms is compatible with good sparsification and good
performance in applications. Even for piecewise constant images,
for which a difference operator provides optimal sparsification, but
at high condition number, our well-conditioned learnt transforms
provide essentially identical, or even better sparsification.

We show the superior promise of our approach as compared to
analytical sparsifying transforms such as the DCT for image represen-
tation. We also show promising performance in image denoising using
the learnt transforms, which compares favorably with approaches
involving learnt synthesis dictionaries such as the K-SVD algorithm,
but at orders of magnitude lower computational cost.
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Sample Allocation in Compressive Imaging
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Abstract—We model the compressible signal with the two states
Gaussian mixture (GM) distribution and consider the sample distortion
function for the recently proposed Bayesian optimal AMP decoder. By
leveraging the rigorous analysis of the AMP algorithm, we are able
to derive the theoretical SD function and a sample allocation scheme
for multi-resolution statistical image model. We then adopt the ”turbo”
message passing method to integrate the bandwise sample allocation with
the exploitation of the hidden Markov tree (HMT) structure of wavelet
coefficients. Experiments on natural image show that the combination
outperforms either of them working alone.

I. INTRODUCTION

Suppose X ∈ Rn, i.i.d ∼ p(x) is a realization of a random
vector. In compressed sensing, we observe the linear combination
Y = ΦX through the encoder Φ ∈ Rm×n,m < n and estimate
X using the decoder ∆. Define the Sample Distortion (SD) function
for X as the minimum achievable squared error distortion over all
encoder-decoder pairs for a fixed undersampling ratio δ. We can show
that the convex combination of two achievable SD points is also
achievable by applying the two encoder-decoders to different portions
of the source. Assuming p(x) :=

∑1
i=0 p(s = i)N (x; 0, σ2

i ), [1]
has provided the theoretical basis for the SD function of Gaussian
encoder-Bayesian optimal AMP (BAMP) decoder pair through the
state evolution formalism.

We then extend the SD notation to the statistical multiresolution
model for natural images. We restrict ourself to a block diagonal
encoder which samples different wavelet band separately and con-
sider the optimized bandwise sampling strategy. The convexified SD
function enables us to perform a greedy sample allocation to achieve
the least distortion. By leveraging the TurboAMP algorithm [2],
We further incorporate HMT structure with the optimized bandwise
sampling to maximize the SD performance.

II. SAMPLE ALLOCATION WITH INDEPENDENT MODEL

We group the wavelet coefficients of natural images according
to the wavelet scale and impose the mutually independent GM
distribution for each wavelet band. To derive the SD function for
multi-resolution images, we need to optimize the sample allocation
under the sample budget constraint m = δn =

∑
imi ,with the

aim of minimizing the total reconstruction distortion. We follow the
ideas presented in [3] and use a distortion reduction (DR) function for
each wavelet band: d(i)(mi) := ni[D(mi/ni)−D((mi − 1)/ni)].
Assuming mi − 1 samples have been allocated to the ith band,
d(i)(mi) is the amount of distortion decreased by adding one more
sample to that band. With the convexified SD function, the optimal
bandwise sampling is achieved by progressively allocating samples
to the band which provides the greatest distortion reduction.

III. SAMPLE ALLOCATION WITH TREE STRUCTURE

To exploit the wavelet dependency across bands, we model the
hidden states with the HMT structure and visualize the posterior
of the source given the observation using a factor graph in Fig. 1.
The turbo decoding [2] procedure is to exchange the local belief
of sj,k between AMP decoding and HMT decoding alternately, by
treating the likelihood on sj,k from one subgraph as prior for the the

band 0 band 1 band 2

s1,4

ω0,i ω1,4

ω1,2

s1,1

s1,2
s1,3

ω1,1

ω1,3

HMT

AMP

s0,i

Fig. 1. Factor graph for bandwise sampling with HMT decoding. ωj,k:
wavelet coefficient at scale j. sj,k: hidden state for ωj,k .

other subgraph. The key feature of our factor graph is for the AMP
decoding part, the sensing procedure is bandwise independent rather
than a mixture of all the wavelet coefficients.

IV. NATURAL IMAGE EXAMPLE

We take the Haar wavelet decompositon of the 256 × 256 cam-
eraman image as a prototypical example. Fig. 2 illustrated SDR
for 5 encoder-decoder pairs under 4 undersampling ratios. The
theoretical SD prediction is reinforced by the simulation results. The
combination of turbo scheme and sample allocation generally delivers
better reconstruction results than either of the two strategies working
alone. Although the sample allocation based on independent model
does not consider the HMT decoding, it is, in practice, a plausible
choice for turbo decoding.
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Fig. 2. SDR plot for Haar wavelet representation of cameraman. SA: sample
allocation. Uni: uniformly distribute samples. ESA: empirically best sample
allocation for turbo decoding. MBB: model based bound.
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Abstract—Signal and image processing have seen in the last few years
an explosion of interest in a new form of signal/image characterization
via the concept of sparsity with respect to a dictionary. An active field
of research is dictionary learning: the representation of a given large
set of vectors (e.g. signals or images) as linear combinations of only few
vectors (patterns). To further reduce the size of the representation, the
combination are usually sparse, i.e, each signal is a linear combination
of only small number of patterns.

This work suggests a new computational approach to the problem
of dictionary learning, known in computational geometry as coresets.
Coreset is a small smart non-uniform sample from the input signals,
such that the optimal dictionary for the input can be approximated by
learning the coreset. Since the coreset is small, the learning is much
faster. Moreover, using merge-and-reduce, the coreset can be constructed
for streaming signals that do not fit in memory in logarithmic space, and
can also be computed in parallel.

I. INTRODUCTION

One of the major problems in image processing is image charac-
terization. By this we mean a system that gets a two-dimensional
function and provides a probability measure as to whether this
function is an image. We are still far from achieving this ultimate
goal, although a few breakthroughs have been recorded. In the past,
many characterizations used the decay rate of the coefficients of
certain transformations. That led to a characterization in a linear
space of functions. In the last decade, a new approach that involves
redundant representations and sparsity has shown promise. In this
framework, a signal is represented again as a superposition of signals,
but unlike the representation with a basis of a linear space, the number
of atoms exceeds the dimension of the signal such that a given signal
may have many different representations. Uniqueness is achieved only
for a subset of signals which can be represented with a limited number
of atoms, called sparse signals. For this class of signals the sparsest
representation is unique. This approach shifts the focus of attention
from the general law of decay of coefficients to the outliers of such
behavior, namely the large coefficients of such an expansion. The
class of sparse signals does not form a linear space, which reflects
the non-linearity of the set of images. At the same time, we still use
linear techniques which helps a lot in practice.

Similar sparsity approaches have been used as well for problems
such as image and texture classification, image compression and
image denoising.

The sparsity approach has appealing features for image processing,
but it suffers from a few problems. First, sparsity is a notion which
is attached to a given dictionary. There is no one universal dictionary
that can represent all image in a sparse way. This calls upon the need
to construct dictionaries for different classes of images or for each
application. Constructing a dictionary for a set of images from the
same class/application goes under the name dictionary learning and
is an active field of research.

Because of the prohibitive computational time and space complex-
ity for computing dictionaries for large images or a large number of
images, dictionary methods are generally limited to small patches of
a single image or a small number of images.

This work brings the spell of coresets to cure the curse of space
and time limitations. Informally, a coreset C for a set of elements
Y is a compressed representation of Y that well approximates the
original data in some problem-dependent sense. The given problem
is then solved on the much smaller coreset and the resulting solution
is applicable to the original set Y . This is done by using C to give
approximate answers for queries about Y .

Coreset techniques were first introduced in the computational
geometry field, and in recent years have been used to solve some well
known open problems in computer science and machine learning.
Corsets present a new approach to optimization and have huge
success, especially in tasks which use large computation time and/or
memory space. In particular, coresets suggest ways to use existing
serial algorithms for distributed (parallel) computing, and provide
solutions under the the streaming model, where the space for solving
the problem at hand is significantly smaller than its input size.

This work deals with coresets for learning dictionaries, and we
demonstrate our ideas on the K−SVD method introduce by Aharon
et al [1]. The K-SVD is a greedy algorithm designed to solve the
following optimization problem: given positive values T0,K and a
matrix Y ∈ Rd×n of atoms, we want to find a dictionary D ∈ Rd×K

and a sparse coefficient matrix X ∈ Rd×k that minimizes

arg min
D,X
‖Y −DX‖F s.t. ∀i, ‖xi‖0 ≤ T0. (1)

where the atoms y are the columns of the matrix Y , the vector xi is
the ith column of X , ‖·‖F is the Frobenius norm (the sum of squared
entries in the matrix) and ‖xi‖0 ≤ T0 is the sparsity of xi, i.e, xi
contains at most T0 non-zeros.

The algorithm solves alternate optimization problem, alternating
between finding a better D (using the SVD algorithm) while pre-
serving the required sparsity of X and find the best sparse X given
a dictionary D using a matching persuit approach (where the orignal
work uses orthogonal matching pursuit).

Formally, a coreset for the problem defined in (1) is a matrix C
such that

‖Y −DX‖F ∼
∥∥C −DX̄

∥∥
F

for every dictionary D ∈ Rd×k. Here, the symbol ∼ denotes a
multiplicative factor of 1±ε. An ε-coreset C is efficient if its number
of columns is c � n, and the optimization problem can be solved
on the much smaller coreset without sacrificing too much accuracy.

Our coreset size depends solely on the required accuracy and
problem parameters and not on the size of the input data. In fact,
due to issues of stability and sensitivity to initial conditions of greedy
algorithms, our method provides a better solution at a lower running
time. Note though that we only provide a method to find the optimal
D and X is later computed normally.
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Reconciling “priors” and “priors” without prejudice ?
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Abstract—We discuss a long-lasting qui pro quo between regularization-
based and Bayesian-based approaches to inverse problems, and review
some recent results that try to reconcile both viewpoints. This sheds
light on some tradeoff between computational efficiency and estimation
accuracy in sparse regularization.

I. INTRODUCTION

A central problem in modern signal processing is to solve inverse
problems of the type y = A(x)+n where A : RN → Rm (m ≤ N )
models a linear or nonlinear observation process, and n accounts for
additive noise in this process. Addressing such problems amounts to
designing estimators ∆ : Rm → RN , also called decoders.

The last decade has witnessed a particularly impressive amount
of work dedicated to linear dimensionality reducing observations
processes (m � N ), where A(x) = Ax, with A ∈ Rm×N . Many
sparse decoders (greedy algorithms, iterative reweighed or thresh-
olding schemes) have been carefully designed and their performance
guarantees have been scrutinized on various types of signals.

Regularization: A particular family of decoders is associated to
regularization through global optimization of a cost function

∆φ(y) := arg min
x

1

2
‖y −A(x)‖22 + φ(x) (1)

where φ : RN → R is a penalty function. The `1 decoder
associated to φ(x) = λ‖x‖1 has attracted a particular attention, for
the associated optimization problem is convex, and generalizations
to other “mixed” norms are being intensively studied. Several facts
explain the popularity of such approaches: a) these penalties have
well-understood geometric interpretations; b) they are known to be
sparsity promoting (the minimizer has many zeroes); c) this can
be exploited in active set methods for computational efficiency; d)
convexity offers a comfortable framework to ensure both a unique
minimum and a rich toolbox of efficient and provably convergent
optimization algorithms.

Bayesian modeling: While the convex and deterministic view-
point on inverse problems has gained a strong momentum, there is
another major route: the Bayesian one. Assuming prior distributions
x ∼ PX , n ∼ PN on the unknown and the noise, and measuring the
risk with the squared loss ‖∆(A(x))−x‖22, the optimum decoder, in
the sense of the minimum expected risk is the conditional mean, also
known as posterior mean or minimum mean squared error (MMSE),

∆?(y) := E(x|y) =

∫

RN

x p(x|y)dx. (2)

Its computation involves high-dimensional integration, which raises
substantial issues typically addressed through sampling (MCMC,
etc.).

II. RECONCILING TWO WORLDS?

Regularization and Bayesian estimation seemingly yield radically
different viewpoints on inverse problems. In fact, they are under-
pinned by distinct ways of defining signal models or “priors”. The
“regularization prior” is embodied by the penalty function φ(x)
which promotes certain solutions, somehow carving an implicit signal

model. In the Bayesian framework, the “Bayesian prior” is embodied
by where the mass of the signal distribution PX lies.

The MAP qui pro quo: A qui pro quo been these distinct
notions of priors has crystalized around the notion of maximum a
posteriori (MAP) estimation, leading to a long lasting incompre-
hension between two worlds. In fact, a simple application of Bayes
rule shows that under a Gaussian noise model n ∼ N (0, Im) and
Bayesian prior PX(x ∈ E) =

∫
E
pX(x)dx, E ⊂ RN , MAP

estimation yields the optimization problem (1) with regularization
prior φX(x) := − log pX(x). As an unfortunate consequence of an
erroneous “reverse reading” of this fact, the optimization problem (1)
with regularization prior φ(x) is now routinely called “MAP with
prior exp(−φ(x))”. With the `1 penalty, it is often called “MAP with
a Laplacian prior”. This qui pro quo has given rise to the erroneous
but common myth that the optimization approach is particularly well
adapted when the unknown is distributed as exp(−φ(x)).

A myth disproved: As a striking counter-example to this last
myth, it has recently been proved [1] that when x is drawn i.i.d.
Laplacian and A ∈ Rm×N is drawn from the Gaussian ensemble, the
`1 decoder – and indeed any sparse decoder – will be outperformed
by the least squares decoder ∆(y) = A+y, unless m & 0.15N .

Reconciliation?: Can these routes be reconciled ? In the context
of additive white Gaussian noise denoising (m = N , A = Im,
n ∼ N (0, Im) it has been shown [2] that the truly Bayesian estimator
∆?(y) is in fact the solution of an optimization problem (1), for some
regularization prior φ? fully determined by the Bayesian prior PX :

∆?(y) = arg min
x

1

2
‖y − x‖22 + φ?(x). (3)

Moreover, for any y ∈ Rm, the global minimum ∆?(y) is indeed
the unique stationary point of the resulting optimization problem (3).
In other words, for AWGN denoising, Bayesian estimation with any
postulated Bayesian prior PX can be expressed as a regularization
with a certain regularization prior φ?.

Is the reverse true ? The results in [2] show that the resulting reg-
ularization prior φ? is necessarily smooth everywhere. Hence, many
popular sparsity-promoting regularization priors cannot correspond to
any Bayesian prior. In particular, the `1 penalty cannot be the MMSE
estimator for any Bayesian prior PX . In other words, the performance
of any sparse-regularization scheme is necessarily sub-optimal. The
talk will discuss consequences of these results in terms of tradeoffs
between computational complexity and estimation performance, as
well as possible extensions to under-determined linear or nonlinear
problems.
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Abstract—The optimal recovery of signals whose domain is the 2-
sphere is considered from an operator theoretical viewpoint. Under
measurement, signals on the 2-sphere are subject to distortions and noise.
These distortions may arise for example from the physical phenomena of
transmission or from limitations of the measurement process. This work
considers two standard engineering criteria, minimum mean square error
(MMSE) and zero-forcing (ZF), for signal recovery given the distortion
is linear and noise is isotropic and additive.

The class of bounded operators which we use to model the signal
distortion process and the signal recovery process subsumes convolution
operators defined on the 2-sphere and related elementary operators such
as SO(3)-rotation operators. The theory is formulated in terms of infinite
dimensional operator matrices which exist for any complete orthonormal
set of functions on the 2-sphere. The signal recovery problem is solved in
generality for the MMSE and ZF criteria. We show that unlike classical
signal processing (where the distortion is usually taken as a convolution)
the zero-forcing formulation does not result as the zero noise limit of the
MMSE solution.

I. INTRODUCTION

The processing of signals whose domain is the 2-sphere, S2 ,
{x ∈ R3 : ‖x‖ = 1} is an active area of research with applications
in geodesy, cosmology, and 3D beamforming/sensing [1]–[5].

Consider the complex Hilbert space L2(S2) of finite energy
functions on the 2-sphere where the inner product is given by

〈f, g〉 =
∫ 2π

0

∫ π

0

f(θ, φ)g(θ, φ) sin θ dθ dφ, (1)

where θ is the co-latitude and φ the longitude. This inner product
induces the norm ‖f‖ , 〈f, f〉1/2. Such an f ∈ L2(S2) we call a
signal on the 2-sphere (or simply “signal”).

II. PROBLEM FORMULATION

The goal of the paper is to estimate a desired signal f ∈ L2(S2)
under the MMSE and ZF criteria when we observe it through a
known distortion and additive noise of known statistics. The distortion
is modeled via an infinite dimensional matrix representation of a
bounded linear operator (see next section). The noise model is zero-
mean, and isotropic [6]. The estimate of the desired signal is obtained
by passing the noisy measurement through an operator also described
by an infinite dimensional operator matrix. This second operator
may be regarded as an equalizer in engineering terms. In essence
the design is to determine the coefficients of the equalizer operator
matrix. The problem is a significant generalization of that given in
[6] which considered a restricted class of distortion models.

A linear operator B on Hilbert space L2(S2) is bounded if there
exists a constant B ≥ 0 such that

∥∥Bf
∥∥ ≤ B

∥∥f
∥∥, ∀f ∈ L2(S2). (2)

Let Y m` ≡ Y m` (θ, φ) denote the complex spherical harmonic of
degree ` and order m then the following coefficients define the
operator matrix B corresponding to B in the spherical harmonic
basis [7]

bm,q`,p ,
〈
BY qp , Y m`

〉
. (3)

If f ∈ L2(S2) is the desired signal we write f to represent its
Fourier coefficient sequence in the spherical harmonic basis. Similarly
the Fourier coefficient sequence of the measured signal is

y = Bf + n (4)

where n is the Fourier noise sequence and B is the distortion operator
matrix. To estimate the desired signal we compose an equalizer
operator matrix Z to form

Zy = ZBf + Zn. (5)

where criteria such as the MMSE and ZF can be used to design Z.
For example, the MMSE criterion seeks to find the Z that minimizes
the `2 complex sequence energy ‖Zy − f‖2.

III. APPLICATION DOMAINS

The various 2-sphere convolution operators given in [2], [8], [9]
can be can be used for the B in the above formulation. These special
cases have known applications [1], [2].

Deconvolution problems in cosmology fit within this framework
including the case where the beam-pattern is axially symmetric.
Spatial truncation operators which are outside the class of convolution
operators fit in the framework, so that signal recovery is possible
when regularizing conditions such as finite spectral degree are
known [10].
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Abstract—We present a accelerated version of the ISTA algorithm,
using a simple active-set strategy. The algorithm is shown to converge,
and its effectiveness is demonstrated on M/EEG inverse problem.

I. INTRODUCTION

Magneto- and electroencephalography (M/EEG) measure the elec-
tromagnetic fields produced by the neural electrical currents. Given a
conductor model for the head, and the distribution of source currents
in the brain, Maxwells equations allow one to compute the ensuing
M/EEG signals. Given the actual M/EEG measurements and the
solution of this forward problem, one can localize, in space and
in time, the brain regions than have produced the recorded data.
However, due to the physics of the problem, the limited number of
sensors compared to the number of possible source locations, and
measurement noise, this inverse problem is ill-posed. We consider a
general class of priors based on mixed-norms. Such norms have the
ability to structure the prior in order to incorporate some additional
assumptions about the sources. We refer to such solvers as Mixed-
Norm Estimates (MxNE). In order to be used in practice, we must
be able to provide algorithms as fast as possible: an estimate should
be obtained in few seconds. Regarding the size of the problem,
classical solvers such as the Fast Iterative Shrinkage/Thresholding
Algorithm [1] cannot be used directly.

II. MATHEMATICAL MODELING

The measurements M ∈ RN×T (N number of sensors and T
number of time instants) are obtained by multiplying the source
amplitudes X ∈ RS×T (S number of dipoles) by a forward operator
G ∈ RN×S , i.e., M = GX . In addition, the measurements are
corrupted by an additive noise E: M = GX + E .

In the context of M/EEG, N lies between 50 for EEG only and 400
for M/EEG combined measurements, while S lies between 5000 and
50000 depending on the precision of the source model considered.

The functionnal considered here is based on the so-called group-
lasso `21 mixed norm. As a consequence, an estimation of X given
by the minimization of Eq. (1) is sparse through the lines, i.e., all
the coefficients of a line of X are either jointly nonzero, or all set
to zero. This approach, proposed earlier for M/EEG [2], avoids the
irregular time series obtained with a simple `1 norm.

X∗ = argmin
X

1

2
‖M −GX‖2 + λ‖X‖21 . (1)

A detailled study is available in [3].

III. ALGORITHM

Starting from a practical implementation of Roth and Fisher’s al-
gorithm [4] to solve a Lasso-type problem, we propose and study the
Active Set Iterative Shrinkage/Thresholding Algorithm (AS-ISTA).
The main idea of this strategy, is to run (F)ISTA on subproblems

which have a small dimension. The subproblems are created by
sticking on the variables which violate the most the KKT constraints.
The algorithm, presented in [5], is summarized in Alg. 1

Algorithme 1: AS-ISTA

1) Initialization: A(0) ⊆ {k such that |〈gk,M〉| > λ},
X(0) = 0RN .

2) Let X̃(0)

A(t) = X
(t)

A(t) . Iterate J(t) times

X̃
(j+1)

A(t) = proxλ‖.‖21

(
X̃

(j)

(A(t) +GTA(t)

(
M −GA(t)X̃

(j)

A(t)

))

and define X(t+1) by X(t+1)

A(t) = X̃J(t)

A(t) .
3) Compute the dual variable Z(t+1) =M −GX(t+1).
4) Let a(t+1) ⊆ {k, such that |〈gk, Z(t+1)〉| > λ}.
5) Update the active set:

A(t+1) = supp(X(t+1)) ∪
{

argmax
k∈{1,...,N}

|〈gk, Z(t+1)〉|
}
∪ a(t+1) .

6) t← t+ 1 and go to 2.

The convergence is proven by observing that the algorithm can be
seen as a particular case of a coordinate gradient descent algorithm
with a Gauss-Southwell-r rule [6]. We will provide experimental
evidence that the proposed method can outperform FISTA and
significantly speed-up the resolution of very undetermined inverse
problems when using sparse convex priors. The proposed algo-
rithm significantly speeds up brain mapping with magneto- and
electroencephalography (M/EEG) when promoting spatially sparse
and temporally smooth solutions using an `21 mixed-norm, which is
crucial for analyzing real data.
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Abstract—In many applications of compressed sensing, one wishes to
acquire images that are sparse in transform domains such as spatial
finite differences or wavelets using Fourier measurements. For these
applications, overwhelming empirical evidence suggests that superior
image reconstruction can be obtained through certain variable density
sampling strategies which concentrate on lower frequencies. However,
as the wavelet and Fourier domains are not incoherent, the compressed
sensing theory does not directly imply the optimal sampling strategy. Here
we use a more refined notion of coherence – the so-called local coherence
– to derive guarantees that sampling frequencies from suitable power-law
densities enables image reconstructions that are stable to sparsity defects
and robust to measurement noise.

Inverse source or scattering problems play an important role in a
wide range of imaging applications such as radar, sonar, astronomy,
and computer tomography. After appropriate approximation and
discretization, the measurements in such settings can be reformulated
as samples from weighted discrete Fourier transforms [1]. Similarly, it
is well known in the medical imaging literature that the measurements
taken in Magnetic Resonance Imaging (MRI) are well modeled as
Fourier coefficients of the desired image. The theory of compressed
sensing [2], [3] seeks to reduce the number of measurements without
degrading the quality of image reconstruction. The underlying key
observation is that signals which allow for an approximately sparse
representation in a suitable basis or dictionary – a central feature of
many classes of natural images – can be recovered from relatively
few linear measurements via convex optimization, provided these
measurements are sufficiently incoherent with the basis in which the
signal is sparse. However, incoherence-based theory falls short in
many imaging applications, as natural sparsity domains for images
such as wavelet bases are not incoherent to the Fourier basis.

A number of empirical studies, including the very first papers on
compressed sensing MRI [4], [5], observed that image reconstructions
from compressive frequency measurements could be significantly
improved by subsampling frequencies according to variable densities,
preferring low frequencies to high frequencies. In [6], the authors
propose to use convex optimization to find a distribution such that the
more coherent the basis element with respect to the sparsity basis, the
higher the density at which they are sampled. While their approach is,
in many regards, parallel to ours, they do not derive rigorous recovery
guarantees for the resulting systems.

Note that lower frequencies are more coherent with wavelets and
step functions than higher frequencies. Taking this reweighting into
account, we find that a finer measure to determine the possibility
of sparse recovery is the local coherence as given by the following
definition.

Definition 1 (Local coherence): The local coherence of an or-
thonormal basis {ϕj}Nj=1 of CN with respect to another orthonormal
basis {ψk}Nk=1 of CN is the function µloc(j) = sup

1≤k≤N
|〈ϕj , ψk〉|.

Indeed, in our presentation we will argue that if the local coherence
of {ϕj}Nj=1 with respect to {ψk}Nk=1 is pointwise bounded by a
function κ, µloc(j) ≤ κ(j), then a matrix Φ consisting of the

m ≥ Cδ−2‖κ‖22s log3(s) log(N) rows {ϕLk}mk=1 will allow for the
recovery of vectors with s-sparse expansions in the basis {ψj}Nj=1,
if the indices Lk are independent random variables drawn according
to the local coherence,

ν(j) := P
[
Lk = j

]
∝ µ2

loc(j), j ∈ {1, 2, . . . , N}

By preconditioning the sensing matrix Φ from the left by D =
diag(dj,j), where dj,j = ‖κ‖2/κj , the resulting matrix can be
interpreted as arising from a bounded orthonormal system – see [7].
This approach was implicitly introduced in the setting of function
approximation in [8]. In the following proposition, we show the local
incoherence of the Fourier basis with respect to the Haar wavelet
system, a necessary ingredient to obtain image recovery guarantees
for the case of frequency samples.

Proposition 2: Let N = 2p for integral p ≥ 8. Then the local
coherence µloc of the two-dimensional Fourier basis {ϕω1,ω2} with
respect to the bivariate Haar wavelet basis {he

n,k} in CN×N is
bounded by

µloc(ω1, ω2) ≤ κ(ω1, ω2) := min

(
1,

18π
√

2

(|ω1|2 + |ω2|2)1/2

)
,

and one has ‖κ‖2 ≤ 52
√
p = 52

√
log2(N).

An immediate consequence of this result is that after increasing the
number of measurements only by a single logarithmic factor in N ,
the well-known recovery results for frequency measurements under
incoherence conditions [9] will carry over to signals which are sparse
with respect to Haar wavelets.

Our main result given in the following uses these bounds combined
with the methods introduced in [10] to establish recovery guarantees
for total variation minimization.

Theorem 3: Fix δ < 1/3 as well as integers

N = 2p, s & log(N), and m & s log3 s log5 N.

Select m discrete frequencies
(
Ωj

1,Ω
j
2

)
independently from the dis-

tribution ν ∝ µ2
loc as defined in Proposition 2. Let FΩ : CN2 → Cm

be the DFT matrix restricted to {
(
Ωj

1,Ω
j
2

)
}.

Assume the noise ξ satisfies
∑

ω1,ω2
ξ2
ω1,ω2

/µ(ω1, ω2) ≤ ε2. Then,
with high probability, the following holds for all f ∈ CN×N .

Given noisy measurements y = FΩf + ξ, the TV-minimizer

f# = argmin
g∈CN×N

‖g‖TV such that
∑

ω1,ω2

(FΩg − y)2
ω1,ω2

ν(ω1, ω2)
≤ ε2,

approximates f to within the best s-term approximation error of the
gradient ∇f and the noise level:

‖f − f#‖2 . ‖∇f − (∇f)s‖1√
s

+ ε.
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Abstract—We summarise the construction of exact axisymmetric scale-
discretised wavelets on the sphere and on the ball. The wavelet trans-
form on the ball relies on a novel 3D harmonic transform called the
Fourier-Laguerre transform which combines the spherical harmonic
transform with damped Laguerre polynomials on the radial half-line.
The resulting wavelets, called flaglets, extract scale-dependent, spatially
localised features in three-dimensions while treating the tangential and
radial structures separately. Both the Fourier-Laguerre and the flaglet
transforms are theoretically exact thanks to a novel sampling theorem on
the ball. Our implementation of these methods is publicly available [1],
[2] and achieves floating-point accuracy when applied to band-limited
signals.

I. INTRODUCTION

Spherical wavelets have been applied successfully to numerous
problems in astrophysics and geophysics to extract features of interest
from signals on the sphere. But in these disciplines, signals on the
sphere are often completed with radial information such as depth,
redshift, or distance, in which case a full 3D analysis is required.

II. SCALE-DISCRETISED WAVELETS ON THE SPHERE

Scale-discretised wavelets [2], [3] allow one to probe and extract
scale-dependent, spatially localised features in signals defined on the
sphere. In the axisymmetric case (i.e. azimuthally symmetric when
centered on the poles) scale-discretised wavelets reduce to needlets
[4] and are constructed through a tiling of the harmonic line, thus
defining an exact continuous transform on the sphere. Also, both the
spherical harmonic and the scale-discretised wavelet transforms are
exact in the discrete setting thanks to the use of a sampling theorem
on the sphere [5]. In other words a band-limited signal, i.e. described
by a finite number of spherical harmonic coefficients, is represented
by a finite number of samples on the sphere without any loss of
information. Since the wavelets are band-limited by construction
a multiresolution algorithm is used to speed up the transform by
capturing each wavelet scale in the minimal number of samples on the
sphere. Our implementation of the scale-dicretised wavelet transform
is publicly available in the S2LET package [2] which supports the
C, Matlab, IDL and Java programming languages. At present the
code is restricted to axisymmetric wavelets but will be extended to
directional, steerable wavelets and spin functions in a future release.

III. FLAGLETS ON THE BALL

The starting point to construct scale-discretised wavelets on the ball
is a novel 3D transform, the Fourier-Laguerre transform, combining
the spherical harmonics with damped Laguerre polynomials on the
radial half-line [1]. We construct axisymmetric wavelets, which we
call flaglets, by separately tiling the tangential and radial harmonic
spaces of the Fourier-Laguerre transform. Both the Fourier-Laguerre
and flaglet transforms are exact continuous transforms, which are
also exact in the discrete setting thanks to a 3D sampling theorem
on the ball. Flaglets extract scale-dependent, spatially localised an-
gular and radial features in signals defined on the ball. Since the
wavelets are band-limit in Fourier-Laguerre space by construction, a
multiresolution algorithm is again introduced. Our implementations
of these transforms on the ball are publicly available in the FLAG
and FLAGLET packages [1].

IV. APPLICATIONS AND PERSPECTIVES

The flaglet transform probes tangential and radial structures at
scales of interest while capturing all the information of a band-
limited signal in the minimal number of samples on the ball. It
is suitable for high precision analysis of 3D data that requires
the separate treatment of angular and radial components. In future
application we intend to exploit flaglets to study galaxy surveys,
which are used in cosmology to study the large-scale structure of
the Universe, specifically by confronting observations (e.g. clustering
properties) with predictions of physical models. Galaxy surveys are
contaminated with intrinsic uncertainties and systematics affecting the
radial and angular dimensions differently. For example photometric
redshifts of galaxies are estimated from colour information with
much higher uncertainty than the estimate of the angular position
of galaxies. Hence a separate treatment of the angular and radial
information is needed to efficiently extract cosmological information
from galaxy surveys and to constrain relevant physical theories. Also,
the flaglet transform takes advantage of the sparsity of these surveys:
gravity tends to generate a filamentary structure that is captured in a
small number of flaglet scales, as shown in figure 1 for an N-body
simulation.

Fig. 1. N-body simulation (top left panel) and its flaglet coefficients for
decreasing flaglet scales (subsequent panels from left-to-right, top-to-bottom).
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Abstract—We compared support vector machine (SVM), k-nearest
neighbor (k-NN) and naive Bayes (NB) algorithms for classifying mag-
netic resonance imaging (MRI) and astrophysical data. An accuracy of
∼80% can be achieved with k-NN on astrophysical data for classifying
star forming regions (SFR) and non-SFR, and with SVM on sodium MRI
data for classifying healthy subjects and subjects with osteoarthritis (OA).

I. INTRODUCTION

In this preliminary study, we compare three algorithms based
on machine/statistical learning theory for classifying two different
kinds of data: one from magnetic resonance imaging (MRI) and
one from astrophysics. The algorithms were: support vector machine
(SVM) [1], k-nearest neighbor (k-NN) [2] and naive Bayes (NB) [3].
On the astrophysical side, we use the classifiers for analyzing the
SCUPOL catalog [4], in which most of the observed stellar regions
are structures of the interstellar medium where star formation occurs
at different stages. On the medical imaging side, we used machine
learning to classify healthy subjects and patients with osteoarthritis
(OA), based on tissue sodium concentration (TSC) measurements
obtained with sodium MRI of cartilage in the knee.

II. DATA PROCESSING AND RESULTS

Astrophysical data - The SCUPOL catalog is a compilation of
83 regions observed at the James Clerk Maxwell Telescope between
1997 and 2005. Polarization maps at 850 microns are available on
48 star forming regions (SFR), 11 Young stellar Objects (YSO), 6
Starless Prestellar Cores (SPC), 9 Bok Globules (BG) and on 1 region
toward the galactic center. Those regions have been first classified ’by
eye’ on a morphological basis, reflecting different structures of the
interstellar medium. Each map provides a matrix of Stokes parameters
containing information about the magneto-turbulent properties of the
regions after integration of the signal. From this matrix, we derive
the mean polarization degree 〈p〉, the standard deviation (std) of the
polarization σp and the std of the polarization angles σθ . Additional
parameters are the distance to each observed target d, and the size
npix of the sample for each map. Classification was performed
between SFR and non-SFR data.

MRI data - Sodium MRI was acquired on the knee cartilage
of 19 healthy volunteers and 28 OA subjects at 7 Tesla, with 2
acquisition sequences: one without fluid suppression - radial 3D
(R3D) - and one with fluid suppression by inversion recovery (IR).
Fluid suppression is expected to increase the sensitivity of sodium
imaging to the characteristic loss of sodium content in cartilage with
OA, by eliminating partial volume effect due to the presence of fluid
signal within the large voxels (3D pixels) of the sodium images [5].
Sodium quantification was performed by linear regression from the
signal of gel phantoms with known sodium concentrations placed on
top of the knee. The mean TSC (〈TSC〉) and its standard deviation
σTSC was then measured in 3 regions of cartilage over 4 consecutive
slices for each subject and each sequence (12 values/subject/sequence
for 〈TSC〉 and σTSC ). OA patients were previously diagnosed by
the standard method of joint space narrowing from radiography.

TABLE I
BEST CLASSIFICATION RESULTS FOR ASTROPHYSICAL AND MRI DATA.

Machine Learning Algorithm k-NN NB SVM
Astrophysical data: σp + npix+ d

Accuracy 79.5% 75.2% 77.0%
Sensitivity 80.8% 63.3% 73.0%
Specificity 78.3% 86.0% 80.0%

Astrophysical data: All 5 parameters
Accuracy 77.0% 75.1% 73.0%
Sensitivity 81.9% 65.0% 70.0%
Specificity 72.2% 85.0% 77.0%

MRI data: 〈TSC〉+ σTSC from IR only
Accuracy 62.9% 76.3% 79.4%
Sensitivity 64.8% 72.6% 75.8%
Specificity 61.7% 78.7% 82.0%

MRI data: 〈TSC〉+ σTSC from IR+R3D
Accuracy 71.1% 72.7% 78.2%
Sensitivity 78.2% 60.0% 79.3%
Specificity 66.1% 81.0% 77.5%

Machine learning - All processing was performed in Matlab
(Mathworks, USA). Z-score normalization was applied on the data.
The train dataset was 25% of the data, with the rest of data used as
test dataset. Each algorithm was applied 100 times for each set of
parameters, and the mean sensitivity, specificity and accuracy (correct
rate) of each method was calculated, where ’true positive’ was defined
as ’SFR’ for astrophysical data or ’OA’ for MRI data.

Results - The two best results from the accuracy point of view for
both data are presented in Table I.

III. CONCLUSION

Machine learning algorithms were applied to astrophysical and
MRI data and gave good accuracy (∼80%) for binary classification,
with both high sensitivity and specificity (75-80%). K-NN provided
the best results for classifying SFR from non-SFR regions with only 3
parameters, while SVM proved to be superior for classifying OA from
healthy subjects using fluid suppressed MRI data. Further studies
will include optimization of the classification parameters (kernel
functions, train/test sets) and acquisition of more data for extending
the classification to other types of stellar regions (SFR, YSO, SPC,
BG) or degrees of OA severity (Kellgren-Lawrence grades 1-4).
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The last years have seen the emergence of the field of structured
sparsity, which aims at identifying a model of small complexity
given some a priori knowledge on its possible structure. Specifically,
models with structured sparsity are models in which the set of
non-zero parameters — often corresponding to a set of selected
variables — is not only assumed to be small, but also to display
structured patterns. Two important examples are group sparsity,
where groups of parameters are simultaneously zero or non-zero, and
hierarchical sparsity, were variables can only be selected following
a prescribed partial order encoded by a directed acyclic graph. A
common approach to the problem is to add to the empirical risk
an implicit or explicit penalization of the structure of the non-
zero patterns. In this talk, I will consider a generic formulation in
which allowed structures are encoded by a combinatorial penalty,
and show that when combined with continuous regularizer such
as an Lp norm, a tightest convex relaxation can be constructed
and used a regularizer. The formulation considered allows to treat
in a unified framework several a priori disconnected approaches
such as norms based on overlapping groups, norms based on latent
representations such as block-coding and submodular functions, and
to obtain generic consistency and support recovery results for the
corresponding estimators obtained as minimizers of the regularized
empirical risk.
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Abstract—This work reviews both theoretical and numerical aspects
of parameter selection for inverse problems regularization. We focus
our attention to a set of methods built on top of the Generalized Stein
Unbiased Risk Estimator (GSURE) [1]. GSURE allows one to unbiasedly
estimate the `2-risk of an estimator on the orthogonal of the kernel of the
forward operator. One can thus automatically and objectively select the
value of some parameters of the estimator by minimizing the GSURE.
Computing the GSURE necessitates the estimation of the generalized
degrees of freedom (df) of the estimator. We prove in [2] a formula that
gives an unbiased estimator of the df for sparse `1 analysis regularization.
This includes analysis-type translation invariant wavelet sparsity and total
variation. This theoretical analysis provides a better understanding of
the sensitivity behavior of `1-analysis regularization, but turns out to be
difficult to compute numerically for large scale imaging problems. Indeed,
convex optimization solvers only provide an approximate solution, which
does not lead to a stable estimation of the df, hence of the GSURE.
We addressed this issue in [3] by proposing a novel algorithm that
recursively computes an unbiased and stable estimator of the `2-risk from
the sequence of iterates generated by a large class of convex optimization
methods.

We consider the inverse problem of estimating a high resolution
signal x0 ∈ RN from noisy observations y = Φx0 +w ∈ RP where
Φ ∈ RP×N is the imaging operator and w ∈ RP is an additive noise.

An estimator xλ(y) of x0 is a function that depends on the
observation y only and is parameterized by some λ. A popular class
of estimators is defined as the solution of a variational optimization
problem

xλ(y) ∈ argmin
x∈RN

1

2
||y − Φx||22 + λJ(x). (1)

The J functional reflects a prior information on the signal, and λ > 0
can be adapted to the noise level and the signal regularity. Computing
the optimal λ is a crucial but difficult issue, and this work details
theoretical and numerical contributions to this problem.

I. GENERALIZED SURE

We now assume that w ∼ N (0, σ2IdP ) is a zero-mean white
Gaussian noise. We assume that µλ(y) = Φxλ(y) is a single-valued
mapping of y. In this setting, one seeks to optimally select λ that
minimizes the expected risk Ew(||xλ(y)− x0||22).

Denoting Π = Φ∗(ΦΦ∗)+Φ the orthogonal projector on ker(Φ)⊥,
the GSURE is defined following [1] as

GSUREλ(y)= ||Φ∗(ΦΦ∗)+y−Πxλ(y)||22−σ2 tr
(
(ΦΦ∗)+

)
+2σ2df(y),

(2)
where df(y) = tr

(
(ΦΦ∗)+ ∂µλ(y)

∂y

)
is the so-called generalized

degrees of freedom (df). If y 7→ µλ(y) is weakly differentiable,
the GSURE gives an unbiased estimate of the risk on ker(Φ)⊥, i.e.
Ew(||Π(x0−xλ(y))||2) = Ew(GSUREλ(y)). The optimal parameter
λ is computed in practice by minimizing GSUREλ(y) from a single
observation y.

II. ANALYTICAL EVALUATION FOR ANALYSIS SPARSITY

A popular class of regularizations is the so-called analysis-type `1-
norm prior where J(x) = ||D∗x||1 see [2]. It measures the sparsity of
the correlations of the signal with the atoms of an analysis dictionary
D = (dj)

Q
j=1 ∈ RN×Q. This includes many popular regularizations,

such as classical synthesis sparsity when D = IdN and anisotropic
total variation when D∗ is a finite difference approximation of the
gradient operator.

We have shown in [2] that the mapping y 7→ µλ(y) is C∞ outside
a set H of Lebesgue measure 0, and that

∀ y /∈ H, df(y) = tr(ΠΓ[J]) where Γ[J] = U(U∗Φ∗ΦU)−1U∗

and U is a matrix whose columns form a basis of GJ = ker(D∗J) and
J = {j \ 〈dj , xλ(y)〉} indexes the co-support of a solution xλ(y)
such that Φ is injective on GJ (such a solution always exists). This
expression of df, plugged into the GSURE definition (2), thus defines
an unbiased estimate of the projected risk.

III. NUMERICAL COMPUTATION USING ITERATIVE SCHEMES

We consider an iterative algorithm of the form x(`+1) = ϕ(x(`), y)
that converges to the estimator xλ(y). A popular family of such
iterative schemes are the so-called proximal splitting methods, [4],
designed to solve large-scale non-smooth convex optimization prob-
lems encompassing (1).

The iterate x(`) = x(`)(y) is a function of the observation. Let

∀ δ ∈ RP , η(`)[δ] = ∂x(`)(y)[δ] ∈ RN

denotes the application to δ of the differential of x(`) at y. Follow-
ing [3], η(`) are computed iteratively

η(`+1)[δ] = ∂1ϕ(x(`)(y), y) ◦ η(`)[δ] + ∂2ϕ(x(`)(y), y)[δ]

where ∂iϕ denote the differential with respect to the ith variable.
The expression of df can then be recucerisvely estimated using

Monte-Carlo integration of the trace from K random realizations of
a zero-mean white Gaussian noise δk ∼ N (0, IdP ) for k = 1, . . . ,K

df(`)(y) ≈ 1

K

K∑

i=1

〈(ΦΦ∗)+η(`)[δk], δk〉.

This can be plugged in (2) to recursively estimate the GSURE.
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[3] C. Deledalle, S. Vaiter, G. Peyré, J. Fadili, and C. Dossal, “Proximal
splitting derivatives for risk estimation,” Proc. NCMIP’12, 2012.

[4] P. L. Combettes and J.-C. Pesquet, Fixed-Point Algorithms for Inverse
Problems in Science and Engineering. Springer-Verlag, 2011, ch.
Proximal Splitting Methods in Signal Processing, pp. 185–212.

23



On a first-order primal-dual algorithm for convex optimization
T. Pock∗ and A. Chambolle†

∗ Intstitute for Computer Graphisc and Vision, Graz University of Technology, 8010 Graz, Austria
† Center of Applied Mathematics, Ecole Polytechnique, CNRS, 91128 Palaiseau, France

I. INTRODUCTION

We consider a particular class of convex optimization problems
with known saddle-point structure that can be written as:

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y) (1)

where X and Y are finite-dimensional vector spaces equipped with
standard inner products 〈·, ·〉, K : X → Y is a bounded linear
operator and G and F ∗ are lower semicontinuous proper convex
functions with known structure. We further assume that G and F ∗

are simple in the sense that their proximal maps are easy to compute.
The optimality condition for (1) is written as

(
KT yn+1 + ∂G(xn+1)
−Kxn+1 + ∂F ∗(yn+1)

)
3 0 , (2)

One of the most-general and best-studied iterative algorithms to solve
problems such as (2) is the so-called the proximal-point algorithm [1],
which for the above problem is written as follows:
(

∂G(xn+1) +KT yn+1

−Kxn+1 + ∂F ∗(yn+1)

)
+M

(
xn+1 − xn
yn+1 − yn

)
3 0 . (3)

The algorithm is known to converge to a solution of (1), as long as
M is symmetric and positive definite. It has been observed in [2],
that by choosing

M =

(
1
τ
I −KT

−K 1
σ
I

)
,

with τ, σ > 0 and τσ‖K‖2 < 1, M , the iterates of the proximal
point algorithm can be written in the explicit form:

{
xn+1 = (I + τ∂G)−1 (xn − τKT yn)

yn+1 = (I + σ∂F ∗)−1 (yn + σK(2xn+1 − xn))
(4)

This is exactly the first-order primal-dual algorithm proposed in [3].

II. CONVERGENCE

It has been shown in [3] that algorithm (4) is optimal in the sense
that it comes along with convergence rates that are known to be
optimal for first-order methods. In particular the algorithm offers the
following convergence rates:
• G and F ∗ not uniformly convex: In this case, convergence of

the algorithm is difficult to quantify, but one can shown that
the partial primal-dual gap converges with rate O(1/N) for the
averages of the iterates, which coincides with the best known
rate.

• G or F ∗ uniformly convex: If one of the both functions are
uniformly convex, than the algorithm can be accelerated by using
iteration dependent steps, to yieldO(1/N2) which is also known
to be optimal for first-order algorithms.

• G and F ∗ uniformly convex: In this case, convergence of the
algorithm is linear, i.e. O(ωN ) which equals the rate of other
optimal first order algorithms including the heavy-ball method,
TWIST and Nesterov’s algorithm.

III. EXTENSIONS

Algorithm (4) can be extended in various ways in order to make
it applicable for more general problems and also to speed up its
convergence.
• Preconditioning: An obvious modification of the algorithm is to

replace the scalar valued step sizes τ and σ in (4) by symmetric,
positive definite matrices T and Σ. It is shown in [4] that
algorithm (4) converges as long as ‖Σ− 1

2KT−
1
2 ‖ < 1. It is

important that the choice of T , Σ still allows to efficiently
compute the proximal mappings with respect to G and F ∗

and hence diagonal matrices are considered in [4]. For ill-
conditioned linear operators K, the preconditioning can speed
up the convergence of the algorithm.

• Overrelaxation: Since (4) is a proximal point algorithm, it
is known that it can be overrelaxed. The idea is simply to
perform the iterates as in (4) to obtain the point (xn+1 1

2 , yn+1 1
2 )

and then to perform for γ ∈ [0, 1) an overrelaxation of the
form (xn+1, yn+1) = (xn+1 1

2 , yn+1 1
2 ) + ((xn+1 1

2 , yn+1 1
2 ) −

(xn, yn)). It turns out that this additional overrelaxation can
speed up the convergence on a number of problems while
keeping the computation complexity basically unchanged

• Nonlinear proximal-point: This extension refers to the general-
ization of the usual quadratic proximal distance function utilized
in the proximal point algorithm to more general distances, say
the Bregman distance on a smooth, strictly convex function
h(u). It turns out that such a choice can significantly simplify
the computations of the proximal mappings.

• Explicit steps: If G and/or F ∗ can be written as the sum of
a smooth plus a simple non-smooth function, it is natural to
incorporate explicit gradient steps in (4)(see [5]). It can be shown
that this setting can also be written as a primal-dual proximal
point algorithm with the help of a special non-linear proximal
distance function.
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Abstract—We present a novel sparse modeling approach to non-rigid
shape matching using only the ability to detect repeatable regions. As
input, we are given only two sets of regions in two shapes; no descriptors
are provided so the correspondence between the regions is unknow,
nor we know how many regions correspond in the two shapes. We
show that even with such scarce information, it is possible to establish
dense correspondence between the shapes by using methods from the
field of sparse modeling. We formulate the problem of permuted sparse
coding, in which we solve simultaneously for an unknown permutation
ordering the regions on two shapes and for an unknown correspondence
in functional representation. Numerically, the problem is solved efficiently
by alternating the solution of a linear assignment and a sparse coding
problem.

I. INTRODUCTION

Ovsjanikov et al. [1] proposed an elegant way to avoid direct
representation of correspondences as maps between shapes using a
functional representation. The authors noted that when two shapes X
and Y are related by a bijective correspondence t : X → Y , then
for any real function f : X → R, one can construct a corresponding
function g : Y → R as g = f ◦ t−1. t uniquely defines a linear
mapping between two function spaces T : L2(X)→ L2(Y ), where
F(X,R) denotes the space of real functions on X . Equipping X and
Y with harmonic bases, {φi}i≥1 and {ψj}j≥1, respectively, one can
represent a function f : X → R using the set of Fourier coefficients
{ai}i≥1 as f =

∑
i≥1 aiφi. Then, translating the representation into

the other harmonic basis, one obtains a simple representation of the
correspondence between the shapes

T (f) =
∑

i,j≥1

aicijψj , (1)

where cij are Fourier coefficients of the basis functions of X
expressed in the basis of Y , defined as T (φi) =

∑
j≥1 cijψj . The

correspondence can be thus by approximated using k basis functions
and encoded by a k × k matrix CCC = (cij) of these coefficients.
In this representation, the computation of the shape correspondence
t : X → Y is translated into a simpler task of finding CCC from a set
of correspondence constraints.

II. PERMUTED SPARSE CODING

Let us be given a set of q regions on X represented by indicator
functions {fi}qi=1 and similarly, gi on Y , assuming that gj ≈ fi ◦
t−1. We stress that the ordering of the fi’s and gj’s is unknown,
i.e., we do not know to which gj in Y a fi in X correspond. This
ordering can be expressed by an unknown q × q permutation matrix
ΠΠΠ. From (1) it follows that ΠΠΠBBB = AAACCC, where AAA = (f1, . . . , fq)TΦΦΦ
and BBB = (g1, . . . , gq)TΨΨΨ. Note that both ΠΠΠ and CCC are unknown,
and solving for them is a highly ill-posed problem. Recalling that
the correspondence should be represented by a nearly-diagonal CCC,
we formulate the following problem

min
CCC,ΠΠΠ

1

2
‖ΠΠΠBBB−AAACCC‖2F + λ‖WWW �CCC‖1. (2)

ΠΠΠ BBB AAA CCC OOO

Fig. 1. Correspondence as a sparse modeling problem: Indicator functions of
repeatable regions on two shapes are represented as matrices of coefficients
AAA and BBB in the corresponding bases ΦΦΦ and ΨΨΨ. Correspondence between the
shapes is encoded by the matrix CCC. We solve ΠΠΠBBB = AAACCC+OOO simultaneously
for an approximately diagonal CCC and the permutation ΠΠΠ bringing the indicator
functions into correspondence. To cope with imperfectly matching regions,
we relax the surjectivity of the permutation and absorb the mismatches into
a row-wise sparse outlier matrix OOO.

where � denotes element-wise multiplication, and the non-negative
parameter λ determines the relative importance of the penalty. Small
weights wij in WWW are assigned close to the diagonal, while larger
weights are selected for the off-diagonal elements.

The solution of (2) can be obtained using alternating minimization
over CCC with fixed ΠΠΠ boiling down to a sparse coding problem,

min
CCC

1

2
‖BBBΠΠΠ−AAACCC‖2F + λ‖WWW �CCC‖1, (3)

and minimization over ΠΠΠ with fixed CCC boiling down to a linear
assignment problem with a relaxation of ΠΠΠ as a double-stochastic
matrix,

max
ΠΠΠ≥000

vec(EEE)Tvec(ΠΠΠ) s.t.

{
ΠΠΠ111 = 111
ΠΠΠT111 = 111.

(4)

We refer to problem (2) as to permuted sparse coding, and propose
to solve it by alternating the solution of the standard sparse coding
problem (3) and the solution of the linear assignment problem (4).

Proposition. The process alternating (3) and (4) converges to a
global minimizer of the permuted sparse coding problem (2).

III. ROBUST PERMUTED SPARSE CODING

Let us assume that q and s regions are detected on X and Y and
only s ≤ q fi’s have corresponding gj’s. This means that there is no
correspondence between r − s rows of BBB and q − s rows of AAA, and
the relation ΠΠΠBBB ≈ AAACCC holds only for an unknown subset of its rows.
We absorb the r−s mismatches in a row-sparse q×n outlier matrix
OOO that we add to the data term of (2). This results in the following
problem

min
CCC,OOO,ΠΠΠ

1

2
‖ΠΠΠBBB−AAACCC−OOO‖2F + λ‖WWW �CCC‖1 + µ‖OOO‖2,1, (5)

which we refer to as robust permuted sparse coding.
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Abstract—We study the multi-view imaging problem where one has
to reconstruct a set of l images, representing a single scene, from a few
measurements made at different viewpoints. We first express the solution
of the problem as the minimizer of a non-convex objective function where
one needs to estimate one reference image, l foreground images modeling
possible occlusions, and a set of l transformation parameters modeling
the inter-correlation between the observations. Then, we propose an
alternating descent method that attempts to minimize this objective
function and produces a sequence converging to one of its critical
points. Finally, experiments show that the method accurately recovers
the original images and is robust to occlusions.

I. PROBLEM FORMULATION

In multi-view imaging, we have in hand l observations
y1, . . . ,yl ∈ Rm of a reference image x0 ∈ Rn. As these obser-
vations are done from different viewpoints, the image x0 undergoes
geometric transformations. We consider here transformations repre-
sented by few parameters (e.g., homography) and denote θj ∈ Rq
the parameters associated to the j th observations. The reference image
transformed according to θj is estimated using, e.g., a cubic spline
interpolation and is equal to S(θj)x0, with S(θj) ∈ Rn×n.

To handle realistic applications, we also assume that parts of
the reference image might sometimes be occluded. We model these
occlusions using l foreground images x1, . . . ,xl ∈ Rn, and assume
that the image “viewed” by the j th observer is S(θj)x0 + xj .

Finally, we model the acquisition device using a linear operator
A ∈ Rm×n, and the observation model satisfy


y1

...
yl


 =




AS(θ1) A . . . 0
...

...
. . .

...
AS(θl) 0 . . . A






x0

...
xl


+



n1

...
nl


 , (1)

where n1, . . . ,nl ∈ Rm represent additive measurement noise.
To reconstruct the images xᵀ = (xᵀ

0, . . . ,x
ᵀ
l ) and the trans-

formation parameters θᵀ = (θᵀ1 , . . . ,θ
ᵀ
l ) from the observations

yᵀ = (yᵀ
1 , . . . ,y

ᵀ
l ), we wish to solve the following problem

min
(x,θ)
{L(x,θ) = ‖Ψᵀx‖1 +κ‖A(θ)x−y‖22 +

∑

16j6l
iΘj (θj)}, (2)

which is non-convex. The matrix Ψ ∈ R(l+1)n×(l+1)n is block-
diagonal and built by repeating l + 1 times, e.g., the Haar wavelet
basis on the diagonal, κ > 0 is a regularizing parameter, A(θ) ∈
Rlm×(l+1)n is the matrix appearing in (1), (Θj)16j6l are closed
convex subsets of Rq , and iΘj is the indicator function of Θj .

II. NON-CONVEX OPTIMIZATION

To solve problem (2), we propose an alternating descent method
producing a sequence of estimates (xk,θk)k∈N, which converges to
a critical point of L. The algorithm is inspired by recent results in
non-convex optimization [1], [2], and consists of two main steps that
sequentially decrease the value of the objective function.

First, we update the images while keeping the parameters fixed. Let
(xk,θk) be the estimates obtained after k iterations, and (λkx)k∈N >
0 be a decreasing sequence. The next estimate satisfies

xk+1 ∈ argmin
x

L(x, θk) +
λkx
2
h(Ψᵀ(x− xk)),
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Fig. 1. From left to right: 3rd initial image; 3rd reconstructed image; estimated
reference image x0; SNR vs. m/n for the proposed method (red) and the
BP problem (black). The curves represent the mean SNR over 30 simulations,
and the vertical lines represent the error at 1 standard deviation.

where h is a smooth approximation of the `1-norm. We noticed
that the addition of the cost term λkx h(Ψᵀ(x − xk))/2 produces
a reconstruction of the images in coarse-to-fine scales fashion and
improves the accuracy of the estimated transformation parameters.

Then, we update the transformation parameters by minimizing a
quadratic approximation of ‖A(θ)x−y‖22. To simplify notations, we
introduce l new functions Qj(θj) = ‖AjS(θj)x

k+1
0 +Ajx

k+1
j −y‖22,

with j = 1, . . . , l. Let I ∈ Rq×q be the identity matrix, and λθ > 0.
Assuming that the entries of S(θj) are differentiable with respect to
θj , the next estimates θk+1

j is chosen as the minimizer of

Pj(θj) = ∇Qj(θkj )
ᵀ
(θj − θkj ) + (θj − θkj )

ᵀ Hkj + 2iλθI

2
(θj − θkj ),

where i is the smallest positive integer such that Qj(θk+1
j ) +

λθ‖θk+1
j − θkj ‖22/2 6 Qj(θ

k
j ) + Pj(θ

k+1
j ). In the above

equations, the matrix Hkj = 2
(
AJkj

)ᵀ (
AJkj

)
with Jkj =(

∂θ1j S(θkj ), . . . , ∂θqj S(θkj )
)
xk+1

0 ∈ Rn×q.

III. EXPERIMENTS AND CONCLUSION

We test the proposed method using 5 images of the same scene,
taken from different viewpoints, and containing occlusions. We gen-
erate 5 measurement vectors using the compressed sensing technique
of [3]. Fig. 1 shows the 3rd initial image next to the corresponding
reconstructed image from m = 0.3n measurements. The estimated
reference image, free of occlusions, is also presented. We also show
the curves of the reconstruction SNR as a function of m/n obtained
with our method and by solving the Basis Pursuit (BP) problem,
which does not benefit from the correlation between measurements.
Our method exhibits better reconstruction qualities.

We have presented a method for the joint reconstruction of a
set of misaligned images. Our algorithm is an alternating descent
method that produces a sequence converging to a critical point of L.
Experiments show that the method correctly estimates the underlying
reference image x0, is robust to occlusions, and benefits from the
inter-correlation between measurements.
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Femto-Photography and Looking Around the Corners
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Abstract—Can we look around corners beyond the line of sight?
Our goal is to exploit the finite speed of light to improve image
capture and scene understanding. New theoretical analysis coupled with
emerging ultra-high-speed imaging techniques can lead to a new source
of computational visual perception. We are developing the theoretical
foundation for sensing and reasoning using Femto-photography and
transient light transport, and experimenting with scenarios in which
transient reasoning exposes scene properties that are beyond the reach
of traditional computer vision. (Joint work with a large team, see
http://raskar.info/femto)
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Abstract—Compressive sensing predicts that sparse signals can be
recovered efficiently from what was previously considered incomplete
linear information using efficient algorithms. While optimal theoretical
guarantees are achieved for (unstructured) Gaussian random measure-
ment matrices, practical applications demand for more structure both
due to modeling and computational reasons. We discuss several types
of structured random matrices motivated by various signal processing
applications as well as the corresponding available theoretical recovery
guarantees.

I. INTRODUCTION

Compressive sensing considers the recovery of a signal x ∈ CN
from measured linear data y = Ax ∈ Cm, where A ∈ Cm×N and
m � N . Without additional information recovery is clearly impos-
sible in this scenario. Compressive sensing exploits that many real-
world signals can be approximated well by sparse vectors (possibly
after a basis transformation). In mathematical terms, x is called s-
sparse ‖x‖0 = #{` : x` 6= 0} ≤ s with s� N .

The naive approach for recovering x from y = Ax, namely the `0-
minimization problem minz ‖z‖0 subject to Az = y is unfortunately
NP-hard, and therefore several alternatives have been introduced
including the `1-minimization problem

min
z
‖z‖1 subject to Az = y,

where ‖z‖1 =
P
` |z`|.

A by-now classical concept for providing recovery guarantees for a
measurement matrix A is the restricted isometry property (RIP). We
define the restricted isometry constants δs as the smallest number
such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 for all s-sparse x.

If δ2s < δ0 for an appropriate δ0 < 1 then `1-minimization and
various other algorithms stably reconstruct x from y = Ax.

So far optimal recovery guarantees are only known for random
matrices. A suitably scaled m×N Gaussian random matrix (having
i.i.d. N (0, 1) entries) satisfies δs ≤ δ if

m ≥ Cδs log(N/s)

and therefore allows stable s-sparse recovery via `1-minimization
(and further algorithms) in the parameter regime.

While Gaussian random matrices provide optimal recovery guar-
antees (concerning optimality see e.g. [1] and references therein) they
are less appealing from a practical point of view. Often the matrix
models a physical measurement device which allows to inject only
a limited amount of randomness. This motivates to study random
matrices with more structure than Gaussian random matrices.

An important example arises from random sampling. Let
ψ1, . . . , ψN : D → C be a set of functions that are orthogonal with
respect to some probability measure ν, i.e.,

R
D ψj(t)ψk(t)dν(t) =

δj,k, and which possess a uniform L∞-bound,

sup
j=1,...,N

‖ψj‖∞ ≤ K

for some suitable constant K ≥ 1 (ideally independent of N ). We
consider functions of the form

f(t) =
NX
j=1

xjψj(t)

which we call s-sparse if ‖x‖0 ≤ s. Given sampling points
t1, . . . , tm the task is to reconstruct f from the sample values
yj = f(tj), j = 1, . . . ,m. Introducing the sampling matrix
A ∈ Cm×N with entries Aj,k = ψk(tm), we can write y = Ax, so
that we arrive at a compressive sensing problem with this particular
A. Choosing the sampling points t1, . . . , tm independently at random
according to the probability measure ν makes A a structured random
matrix. It is known, see e.g. [2] and references therein, that A satisfies
the RIP in the sense that δs ≤ δ with high probability provided the
number of samples satisfies m ≥ Cδs log4(N).

An important example is the trigonometric system ψj(t) = e2πij·t,
arising for instance in MRI. With a reweighting trick also orthogonal
polynomial systems [3] and spherical harmonic expansions [4] are
covered, the latter being important in various astronomical signal
processing applications.

Another type of structured random matrix arises from subsampled
random convolutions, that is,

Ax = RΘ(b ∗ x), Θ ⊂ {1, . . . , N},#Θ = m,

where b is a subgaussian random vector (for instance, the bj = ±1
being independent Rademacher variables), RΘ is the restriction of
a vector in CN to its entries in Θ, and b ∗ x is the convolution
of b with x. The set Θ may be arbitrary, for instance, of the
form Θ = {L, 2L, 3L, . . .} for some integer L. Such a partial
random circulant matrix arises for instance in radar applications or
compressive coded aperture imaging. A recent result [5] states that
A satisfies the RIP with high probability in the parameter regime
m ≥ Cs log2(s) log2(N).

Further structured random matrices of interest include random
Gabor synthesis matrices [6], [5] and random scattering matrices
arising from remote sensing [7].
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Abstract—The uncertainty principle expresses the limitation for a
function to be simultaneously concentrated or sparse in two different
representations. We generalize some uncertainty inequalities (support
and entropy based) from bases to frames and we refine them.

I. INTRODUCTION

The uncertainty principle expresses the limitation for a function to
be simultaneously concentrated or sparse in two different representa-
tions. The ingredients of this principle are: a signal in a Hilbert space,
different representations without loss of information (projection on
bases or frames), a measure of concentration (variance, entropy,
`p-norm...). We generalize the Elad-Bruckstein `0 inequality and
entropic inequalities from bases to frames and suggest refined bounds
by introducing the r-coherence (see below). Let us first introduce
some notations and key quantities.
Coherence: Let r ∈ [1, 2], let r′ be such that 1/r + 1/r′ = 1.
The mutual coherence of order r of two frames {uk}k and {vl}l is
defined by

µr(U ,V) = sup
`

(∑

k

|〈uk, v`〉|r
′

)r/r′
, (1)

r = 1 is the standard mutual coherence µ(U ,V).
Frame: U = {uk, k ∈ Λ} and V = {v`, ` ∈ Λ} two
countable frames for the Hilbert space H. We denote by AU , BU
and AV , BV the corresponding frame bounds, i.e. we have for all
x ∈ H, AU‖x‖2 ≤

∑
k
|〈x, uk〉|2 ≤ BU‖x‖2and AV‖x‖2 ≤∑

`
|〈x, v`〉|2 ≤ BV‖x‖2 .

Rényi entropies: In physics and information theory, entropy is a
measure of disorder, or information content. For x ∈ H, let ak =
〈x, uk〉 and ã = a/‖a‖2. Given α ∈ [0,∞], the Rényi entropy reads

Rα(a) =
1

1− α ln
(
‖ã‖2α2α

)
. (2)

The limit α → 1 gives S(a) the Shannon entropy. Also, Note:
R0(a) = ln ‖a‖0.

II. REFINED ELAD-BRUCKSTEIN `0 INEQUALITIES

The classical Elad-Bruckstein `0 inequality [1] gives a lower
bound for the product of support sizes of two orthonormal basis
representations a and b of a single vector:

‖a‖0.‖b‖0 ≥ 1/µ1
2. (3)

The inequality is extended to the frame case and generalized as
follows.

Theorem 1: Let U and V be two frames of the Hilbert space H.
Let Ũ , Ṽ be their respective dual frames. For any x ∈ H, x 6= 0,
denote by a = Ux and b = V x the analysis coefficients of x with
respect to these two frames. For all r ∈ [1, 2], coefficients a and b
satisfy the uncertainty inequality

‖a‖0.‖b‖0 ≥ 1/µ∗(U , Ũ ,V, Ṽ)
2

(4)

where µ∗(U , Ũ ,V, Ṽ) = infr∈[1,2]

√
µr(Ũ ,V)µr(Ṽ,U).

Sketch of proof:

‖b‖∞ = sup
`

|〈x, v`〉| = sup
`

∣∣∣∣∣

〈∑

k

akũk, v`

〉∣∣∣∣∣ ≤

≤ sup
`

∑

k

|ak| |〈ũk, v`〉| ≤ ‖a‖r µr(Ũ ,V)1/r ,

and
‖a‖rr ≤ ‖a‖0 ‖a‖r∞ ≤ ‖a‖0 ‖b‖rr µr(Ṽ,U) .

Use the same estimate on ‖b‖r .
In addition: 1) For all r ∈ [1, 2], the inequality can only be sharp if
|a| and |b| are constant on their support. 2) In some cases µr ≤ µ1.

III. ENTROPIC INEQUALITIES

Uncertainty inequalities involving entropy measures have been
derived in several different contexts (see [2], [3], [4] for example).
Let U and V be two frames of the Hilbert space H. Let Ũ , Ṽ be

their respective dual frames. Let us introduce: ρ(U ,V) =
√

BV
AU

,

σ(U ,V) =
√

BUBV
AUAV

≥ 1 and νr(U , Ũ ,V) =
µr(Ũ,V)
ρ(U,V)r .

We then have the following theorem, which can be seen as a frame
generalization of the Maassen-Uffink uncertainty inequality [4], [3]:

Theorem 2: LetH be a separable Hilbert space, let U and V be two
frames of H, and let Ũ and Ṽ denote corresponding dual frames. Let
r ∈ [1, 2). For all α ∈ [r/2, 1], let β = α(r−2)/(r−2α) ∈ [1,∞].
For x ∈ H, denote by a and b the sequences of analysis coefficient
of x with respect to U and V . Then the Rényi entropies satisfy the
following bound:

(2−r)Rα(a)+rRβ(b) ≥ −2 ln(νr(U , Ũ ,V))− 2rβ

β − 1
ln(σ(U ,V))

(5)
Sketch of proof: Use the Riesz-Thorin interpolation theorem

between L2 → L2 and L1 → L∞ and apply the log. to the Lp-
norm.

Corollary 1: Assume U and V are tight frames, and let r ∈ [1, 2):
1) For all α ∈ [r/2, 1], with β = α(r − 2)/(2α− r) ∈ [1,∞]

(2− r)Rα(a) + rRβ(b) ≥ −2 ln(νr(U , Ũ ,V)) . (6)

2) S(a) + S(b) ≥ −2 ln
(
µ∗(U , Ũ ,V, Ṽ)

)
.
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Abstract—We propose a turbo approximate message passing (AMP)
algorithm to detect spatially clustered changes in signal magnitude,
relative to a reference signal, from compressive linear measurements.
We then show how the Gaussian posterior approximations generated
by this scheme can be used for mutual-information based measurement
kernel adaptation. Numerical simulations show excellent performance.

I. SUMMARY

A. Compressive noncoherent change detection

In change detection, one observes noisy linear measurementsy =
Ax+w ∈ CM of a signalx ∈ CN and aims to detect changes inx
relative to a known reference signalr ∈ CN . Here,A represents a
known measurement kernel andw represents white Gaussian noise.

Our focus is noncoherent change detection, where the phase
difference betweenr andx may be significant even in the absence
of a material change. In this case, the goal is to detectchanges in
magnitude betweenx andr. An example application arises in radar,
where small (e.g., wind-induced) movements in foliage can result in a
large independent phase differences in each pair(xn, rn) even when
the material present in pixeln has not changed.

We are particularly interested in thecompressive case, where the
number of measurements,M , is less than the signal length,N .
Although we assume that the magnitude changes|x|−|r| are sparse,
and possibly even structured-sparse, we do not assume that the signals
x andr themselves are sparse in a known basis, nor is their difference
x − r. Note that, if (an estimate of)x was available, then standard
techniques [1] could be applied to detect changes between|x| and
|r|. However, we do not observex, and the lack of sparsity inx (and
x−r) prevents the use of standard compressed sensing techniques to
recoverx from y. Thus, the problem is somewhat challenging.

Our approach exploits that fact that, under the sparse magnitude-
change assumption,|r| does provide information about|x| that can
aid in compressive recovery ofx and—more importantly—joint
change detection and signal recovery. For this, we model

xn = sncn + (1 − sn)(rnejθn + dn), (1)

where sn ∈ {0, 1} indicates the presence of a change,cn ∈ C
represents the changed pixel value,θn ∈ [0, 2π) represents an
unknown phase rotation, anddn ∈ C represents a small deviation
allowed in an “unchanged” pixel. We then assign the priors

cn ∼ CN (0, νr) i.i.d with νr = 1
N

∑N
n=1 |rn|2

θn ∼ U [0, 2π) i.i.d
dn ∼ CN (0, νd) i.i.d with νd ≪ νr

sn ∼ Markov,

(2)

where the Markov property on{sn} captures the fact that changes
are often spatially clustered. Finally, we jointly infer the change
pattern s and the signalx using the turbo extension [2] of the
Bayesian approximate message passing (AMP) algorithm [3]. To our
knowledge, the use of AMP with a signal prior of this form is novel.

With support from NSF grant CCF-1018368 and DARPA/ONR grant
N66001-10-1-4090.

B. Measurement adaptation

We now allow the aforementioned approach multipleadaptive
measurement steps, building on the work in [4]. In stept=1, . . . , T ,
the detector collects measurementsyt =Atx + wt ∈ CMt using a
kernelAt optimized around the uncertainty ofx (or s) that remains
from inference based on the cumulative previous measurements
y

t−1
, [yT

1, . . . ,y
T
t−1]

T. When optimizingAt for the recovery of
x, [4] suggested to maximize the mutual information (MI) between
Gaussian approximations of the random vectorsx ∼ p(x|y

t−1
) and

y t ∼ p(yt|yt−1
;At). Indeed, whenx andy t are jointly Gaussian,

[4] established that the MI-maximizingAt is computable using
eigendecomposition and waterfilling. Conveniently, the necessary
Gaussian approximation onx is an output of turbo AMP. Fors-
adaptive kernel design, we now propose a similar approach based on
a Gaussian approximation ofs ∼ p(s|y

t−1
).

C. Numerical results

The left plot shows the normalized mean-squared error (NMSE) in
recoveringx∈C200 versus cumulative number of measurementsM ,
under15 dB SNR andνd =0.001, averaged over1000 realizations.
All quantities were drawn according to (2), with the binary Markov
chain for s activating 10% changes on average, clustered with
an average run-length of10. There, turbo-AMP with MI-x kernel
adaptation performed best, approximately2dB better than turbo-AMP
with i.i.d-GaussianA, while LMMSE estimation ofx with i.i.d-
GaussianA performed significantly worse. The right plot shows the
corresponding normalized detection error rate (NDER), where turbo-
AMP with MI-s kernel adaptation performed best, and significantly
better than Bayes-optimal change detection using LMMSE-x, even
when change clustering was exploited. Although turbo-AMP with
MI-s kernel adaptation did not work well forx-recovery, we did not
expect it to, since it was optimized for change detection.
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Abstract—We detail novel, provably convergent algorithms for vari-
ational Bayesian inference in large scale applications, such as image
deconvolution (non-blind or blind) and magnetic resonance imaging.

Popular sparse reconstruction algorithms can be seen as maximum
a posteriori estimation in sparse generalized linear graphical models.
The move from point estimation to Bayesian inference, namely
quantifying the posterior (Boltzmann) distribution through its low
order moments (mean, (co)variances) and log partition function, has
many potential advantages, such as robust reconstruction by minimum
mean square estimation (posterior mean instead of mode), automatic
calibration of free parameters such as noise variance, convolution
kernel or prior parameters without costly cross-validation, scoring
predictive reliability by posterior variances, and advanced decision
making (Bayesian experimental design, Bayesian active learning).
However, inference beyond MAP is intractable and has to be approx-
imated. Even though inference is a harder problem than estimation,
applications demand scalability of methods comparable to MAP.

In order to meet such demands, variational approximations relax
Bayesian inference to tractable optimization problems. On most large
scale models, they can be substantially faster than Markov chain
Monte Carlo methods, the mainstream approach to Bayesian infer-
ence in statistics today. Expectation propagation [1] is maybe the most
versatile and accurate variational inference relaxation known today, a
direct generalization of loopy belief propagation to models with con-
tinuous and discrete variables and potentially densely coupled graphs.
It is rooted in the TAP approximation from statistical physics and
can be seen as (more costly) improvement of approximate message
passing (AMP) methods, even though it predates the latter. However,
the basic coordinate update “message passing” EP algorithm used
in most applications today does not scale to large models used in
imaging. Parallel message passing variants frequently fail to converge
on models with hard sparsity priors (such as spike and slab). In
general, coordinate-wise message passing does not make use of
modern convex optimization methods such as Newton-Raphson or
first order methods.

In this talk, we describe a novel EP algorithm [2], which is both
provably convergent and can be scaled up to large densely connected
models, drawing a connection between the double loop algorithm of
Opper and Winther [3] and earlier work by the author on scalable
algorithms for simpler relaxations. Even for problems of moderate
size (such as Gaussian process classification with a few thousand
training points), the new algorithm converges at least an order of
magnitude faster than the standard (sequential) EP algorithm. Time
permitting, we will show recent results on models with hard sparsity
prior potentials (spike and slab).
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Recovery of sparse translation-invariant signals with
continuous basis pursuit

Eero Simoncelli∗, Chaitu Ekanadham∗ and Daniel Tranchina∗
∗ New York University

We consider the problem of decomposing a signal into a linear
combination of features, each a continuously translated version of one
of a small set of elementary features. Although these constituents are
drawn from a continuous family, most current signal decomposition
methods rely on a finite dictionary of discrete examples selected
from this family (e.g., a set of shifted copies of a set of basic
waveforms), and apply sparse optimization methods to select and
solve for the relevant coefficients. Here, we generate a dictionary that
includes auxilliary interpolation functions that approximate translates
of features via adjustment of their coefficients. We formulate a
constrained convex optimization problem, in which the full set of
dictionary coefficients represent a linear approximation of the signal,
the auxiliary coefficients are constrained so as to only represent
translated features, and sparsity is imposed on the non-auxiliary
coefficients using an L1 penalty. The well-known basis pursuit
denoising (BP) method may be seen as a special case, in which the
auxiliary interpolation functions are omitted, and we thus refer to
our methodology as continuous basis pursuit (CBP). We develop two
implementations of CBP for a one-dimensional translationinvariant
source, one using a first-order Taylor approximation, and another
using a form of trigonometric spline. We examine the tradeoff
between sparsity and signal reconstruction accuracy in these meth-
ods, demonstrating empirically that trigonometric CBP substantially
outperforms Taylor CBP, which in turn offers substantial gains over
ordinary BP. In addition, the CBP bases can generally achieve equally
good or better approximations with much coarser sampling than BP,
leading to a reduction in dictionary dimensionality.
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Graph theoretical modelling of high dimensional datasets or signals
is slowly emerging as a versatile tool, merging together elements of
machine learning, signal processing but also geometrical insights.
Much work remains to be done for understanding the fundamental
limits of these models, though. In this talk, we will discuss the
interplay between localization and uncertainty in some graph based
representations with a particular emphasis on their role in graph based
harmonic analysis and in the emergence of a body of methodological
methods that hint at new ways of processing signal on graphs.
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Abstract—The problem of dictionary selection for linear sparse ap-

proximation will be revisited in this paper. A dictionary for sparsifying
a class of signals is often selected based upon the domain knowledge or

using some exemplar signals. We present a new exemplar based approach

for the dictionary selection, which combines the two approaches. In

this framework, a large set of atoms is also given as the mother
dictionary and the task is to choose a subset of the atoms, which suits

the given exemplars. The new dictionary learning problem is initially

formulated as a new type of joint sparsity model, which differs from the
standard joint sparsity model. A simple gradient based algorithm will

then be presented here to practically solve the optimisation problem.

An important advantage of the new formulation is the scalability of

the learning algorithm. The new dictionary selection paradigm is here
examined with some synthetic experiments1 .

I. INTRODUCTION

Let Y = [yl]l∈[1,L] be a matrix made by training samples yl ∈ Rm

and Φ = [φi]i∈I , |I| = n be a mother dictionary of normalised

atoms φi ∈ Rm. We assume that the generative dictionary D ∈
Rm×p, m ≤ p is made by a subset selection of the atoms in Φ, i.e.

D = [φi]i∈J where J ⊂ I and |J | = p < n. We assume that each

yl is approximately generated by a k-sparse coefficient vector γl,

by yl ≈ Dγl. The problem of optimal dictionary selection, which

has a close relationship with the framework introduced in [1], is

to find index set J , given Y, Φ, p and k. Let X ∈ Rm×L be a

coefficient matrix and fJ (i) : [1, p] 7→ [1, n] be the mapping that

assigns the corresponding atom index of Φ to the ith component of

γl. By assigning {xl}fJ (i) ← {γl}i, ∀i ∈ [1, p], ∀l ∈ [1, L], while
the other elements of X are set to zero, the generative model can be

reformulated as, Y ≈ ΦX. X is k-sparse in each column and p-row-
sparse, i.e. only p rows of X have non-zero components. It thus lies

in the intersection of K :=
˘

X ∈ Cm×L : ‖xl‖0 ≤ k,∀l ∈ [1, L]
¯

and P :=
˘

X ∈ Cm×L : ‖X‖0,∞ ≤ p
¯

, where ‖X‖0,∞ = ‖ν‖0,
with {ν}i := ‖x(i)‖∞ and x(i) is the ith row of X.

Let the representation error be defined as ψ(X) := ‖Y−ΦX‖2F .

The optimal dictionary D, which can alternatively be indicated by

J , is defined as the sub-dictionary used by the solution of following

problem,

min
X

ψ(X), s. t. X ∈ K ∩ P . (1)

This optimisation problem can generally have unbounded solutions.

However, if the null-space of Φ does not have any non-trivial element

in K ∩ P , the solutions would be bounded [2].

II. DICTIONARY SELECTION ALGORITHM

We use a gradient based method to approximately solve (1), which

iteratively updates the current solution X[n], in the negative gradient

direction of ψ(X) at X[n] and map onto K ∩P . The gradient of ψ,
which is noted by G, can be found by, G = 2ΦT (ΦX−Y).

An important part of the gradient based methods is how to select

the step size. An efficient step size selection technique was used in

1This work was supported by EU FP7, FET-Open grant number 225913
and EPSRC grant EP/J015180/1.
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Fig. 1. Phase transitions using, (a) K, (b) P and (c) K∩P as the admissible
sets. The black area indicates successful dictionary recovery.

[3] for the sparse approximations of k-sparse signals. Similarly, we

calculate the initial step size using the gradient matrix G, constrained

to the support, by µ = 1
2

GH
S ΦHΦGS

GH
S

GS
where GS ∈ Rm×L is G

masked by the support of X, S.
Mapping the updated solution onto K ∩ P is done by, first

projecting onto P , then projecting onto K. Although this mapping is

not a projection onto the intersection of K and P , we can show

that alternating projections onto P and K, find a point on their

intersection.

The introduced gradient mapping algorithm may increase the

objective with the initial step size. We should thus reduce the stepsize

to guarantee monotonic decrease of the objective in each update.

We have shown the convergence property of such gradient mapping

algorithm in [2].

III. SIMULATION RESULT OF A CASE STUDY

A dictionary Φ ∈ R20×80 was randomly generated by normalising

a zero mean, unit variance normal distribution. The mother dictionary

D was randomly selected form Φ. A set of training matrix Y was

generated using the generative model and k-sparse coefficient vectors,
which were generated with random support and uniformly random

magnitudes between 0.2 and 1. This experiment was repeated for

various δ = p/n and ρ = k/m, while keeping m = 20 and n = 80
fixed. To recover the optimal generative dictionary D, given Y, p
and k, we used the gradient mapping/projection algorithm with three

different admissible sets, i.e. K, P and K ∩ P , to demonstrate the

superiority of the proposed framework.

The phase transitions of the average correct dictionary recovery

of 100 trials, have been plotted in Figure 1, with the constraint K
in (a), P in (b) and the proposed constraint in (C). While the black

colour means high exact dictionary recovery, it is clear that the exact

recovery in (c) is most probable, with respect to (a) and (b).
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Abstract—For many years now,several signal processing techniques
have been of extensive use by the astronomical community. Several mis-
sions analysing the radiation from the Cosmic Microwave Background,
including the upcoming Planck experiment, have used signal processing
techniques to extract signals which would be otherwise berried deep
within the noise and the systematic effects from the experiment. There
are many further applications and data sets which will benefit a huge
amount from signal processing techniques in the future, most notably in
the radio domain. I will in discuss in this talk the prospects of using signal
processing techniques in simulations of future and upcoming radio data
which will be able to significantly improve our capability of measuring
the epoch of reionisation as well as measure cosmology and the dark
energy component in our Universe.

I. INTRODUCTION

Most of Cosmology today is the study of statistical random
fields. This is how we are able to test theories of the formation
of structure in our Universe, measure distances via the so called
Baryonic Acoustic Oscillations imprinted in the distribution of matter
in our Universe and test modifications to gravity theories by looking
at how fluctuations in the matter density field grow. To date, we have
a huge knowledge about our Universe. We have a working theory
of inflation which is yet to be fully tested by has solved already
several conceptual problems in cosmology. We have measured very
accurately the processes which occur in the early Universe when
nucleosynthesis takes place and during recombination. Finally we
have mapped extensively the distribution of galaxies in the late time
Universe. However serious questions remain: for instance we have not
yet seen the signal from the first sources in our Universe and we have
no clue what these first sources are. We also have no working theory
which explains the current accelerated expansion of the Universe.

II. THE EPOCH OF REIONISATION, COSMOLOGY AND DARK

ENERGY VIA 21 CM RADIATION.

Radio telescopes are able to probe the epoch of Reionisation [1]
and also measure enough statistical fluctuations to pose a very strong
constraint on the properties of dark energy via the 21cm radiation
[2], [3]. This radiation which originates form forbidden hyperfine
transition of neutral hydrogen can be seen at around 100-200MHz
at redshifts of interest for Reionisation studies and around 500-
1400MHz at redshifts of interest for dark energy studies. This has
been some of the main science motivations for the future Square
Kilometre Array which will be one of the most sensitive radio
telescopes and will share a site between South Africa and Australia.
There are other telescopes which aim to measure signals in these
frequency regimes which will also teach us about these two epochs
in the history of our Universe.

The Signal from the 21cm radiation is a very faint line signal which
will map the anisotropies of density as well as ionisation throughout
space and back in time. When it comes to measure the reionisation
signal this is likely to be a diffuse signal which will be modulated by
the anisotropies of the density fluctuations but also by the ionisation
field. For measuring dark energy we are mainly interested on the
emission from the neutral hydrogen present in galaxies. Measuring
such galaxies with the SKA has been shown to not only be able to

measure dark energy below a percent in accuracy [4], [5] it can also
measure the masses of cosmological neutrinos [6] and test general
relativity [7]. It is however possible to obtain much faster experiments
by degrading the resolution of the radio telescope and mapping the
intensity of the line radiation with the so called intensity mapping
experiments [8].

III. FOREGROUND SEPARATION

The above science requires good foreground subtraction as there
will be a strong continuum emission from our own Galaxy from
sources such as synchrotron emission, free-free emission, emission
form supernovae remnants as well as extragalactic emission. This
has to be separated from the 21cm maps so that an analysis of the
clustering as well as the anisotropies during the epoch of reionisation
can be interpreted. There has been some attempts of doing this
with techniques from signal processing used successfully in CMB
experiments in [9], [10] for EoR data and in [11] for intensity
mapping data. This are more sophisticated techniques which will
gain compared to the simple types of fitting that were being used
previously in this area.

I will review in this talk the current techniques which are being
used and other potential problems in studying the Epoch of Reionisa-
tion, Cosmology and dark energy with future radio telescopes. This
should create a good platform where we can see where the signal
processing techniques can help extracting these weak signals from
the data and also where further work is still required.
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Abstract—5D interferometric imaging is the capability to image directly
astronomical targets in three spatial dimensions, with both the time and
wavelength dependencies taken into account during the reconstruction
process. We present here recent reconstruction results obtained using
wavelet-based compressed sensing on the surface of spheroidal stars
modeled in real time using GPU computing. Our optimization approach
exploits an hybrid gradient-based and MCMC engine, and makes use of
the Bayesian model selection framework to select optimal wavelet bases.

I. INTRODUCTION

The current paradigm of image reconstruction in optical interfer-
ometry is overwhelmingly that of monochromatic snapshot imaging
on a two-dimensional plane (“2D imaging”). However many time
dependent effects can prevent the imaging of the most interesting
stellar surfaces (rotating stars, contact binaries, . . . ). In addition many
objects present strong wavelength dependencies, and until recently [1]
little work had been done on multi-spectral image reconstruction. Our
work intends on solving both these issues for the problem of imaging
stellar surfaces.

II. MODELING A 3D SURFACE

The surface of a star may considerably depart from spherical
symmetry for various reasons. A fast-rotating star close to its breakup
speed will e.g. cause a very visible elongation along its rotation
axis[2]. In the case of interacting binaries such as Algol[3] some
components may fill their Roche lobe. Our code uses a custom mod-
ification of Healpix[4] to describe stellar surfaces. Though Healpix
pixels only have equal surfaces on a perfect sphere, this framework
remains practical for any spheroid. To each Healpix pixel is associated
a spherical coordinate vector, which radius is dynamically computed
using the general Roche equation of the gravitational potential [5].
To each Healpix pixel is also associated a temperature: it is here the
quantity to reconstruct, in contrast with classic 2D imaging where
brightness/fluxes are used.

In addition to this description of static surfaces, any three-
dimensional elements may be added to our models.

III. ADDING THE TIME DEPENDENCY

For a single star in solid-body rotation, the rotation parameters
(axis orientation and rotation speed) are sufficient to describe the
movement. Implementation of differential rotation is under study.
For multiple stars, our current code incorporates orbital calculations,
including the possibilities of defining hierarchal binary systems.
Graphics Processing Units (GPUs) are used to to render any 3D star
into a 2D surface, bypassing potential numerical complexities due to
eclipsing stars.

IV. ADDING WAVELENGTH DEPENDENCIES

Our implementation of the wavelength dependencies is currently
rudimentary, with the geometry of the surface currently assumed not
to vary with wavelength. SED information and differential quantities
dependent on wavelength are taken into account in our χ2 metric.
Wavelength-dependent limb-darkening is added in post-processing on
top of the brightness map derived from the intrinsic temperatures.

V. OPENCL AND OPENGL
Both the OpenGL and OpenCL GPU frameworks are used:

OpenCL accelerates our vector operations (NFFT, χ2, stellar geome-
try, gradients) and OpenGL dynamically updates the stellar surfaces
(rotation, limb-darkening, final rendering).

VI. RECONSTRUCTION AND REGULARIZATION

Interferometric imaging is a regularized maximum likelihood prob-
lem. Our code offers a vast choice of regularizations based on sparsity
in gradient or wavelet bases. We use the total variation regularizer
modified to work on spheroids, as well as a derived `0.5 regularizer
for spot detection. Because most of the regularizers are non-convex,
we rely currently on MCMC optimization (simulated annealing and
parallel tempering). In multi-wavelength mode, a stack of images
is reconstructed, using several types of trans-spectal regularizations
to impose smooth image continuity along spectral channels. Opti-
mization is slow with a large number of spectral channels, and thus
ADMM techniques [1] are being considered.

VII. BAYESIAN MODEL SELECTION

Our MCMC scheme has been modified to computed the marginal
likelihood using the Nested Sampling algorithm [6]. This allows
model selection on all hyperparameters and regularizers.

VIII. FUTURE PLANS

Our current code is focused on stellar surface imaging and thus
will be extended beyond interferometric imaging to complementary
inverse problems such as light-curve inversion [7] and Doppler
imaging [8].
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Abstract—We present a new general purpose deconvolution algorithm
and its implementation. As an evolution of the MCS algorithm [1], it
is implementing the key ideas of the mainstream solutions, like correct
sampling and a separate channel for the deconvolution of point sources.
But we improved it with major evolutions in the areas of point sources
characterization, regularization and simultaneous deconvolution, making
it one of the most powerful tool for precise photometry and morphology
analysis.

I. INTRODUCTION

During the last decades, image deconvolution was widely stud-
ied and successfully applied to astronomical data. It allows the
reconstruction of an underlying scene after its alteration by the
atmosphere and by the instrumental response of the instrument.
However, deconvolution is by construction a mathematically ill-posed
problem accepting an infinite number of solutions. For this reason,
multiple algorithms have emerged (see [2], [3], [4]), using different
priors to constrain the problem and build a likely model. Despite the
number of proposed solutions, none are really acceptable in terms of
accuracy and fidelity, in particular due to the artifacts they generate.
We remedy to this by presenting a recently developed solution,
derived from the MCS [1] algorithm.

II. CORRECT SAMPLING

Deconvolution by a classical Point Spread Function(PSF) leads
automatically to an infinite resolution. Indeed, a point source in
the data should be rendered as a point source in the reconstructed
model. However, this is impossible to represent as the model itself
is sampled. To bypass this problem, our algorithm implements a key
idea, imagined by [1], consisting in deconvolving by a narrower PSF,
leading to a correctly sampled model.

III. SOURCE SEPARATION AND CHARACTERIZATION

Our algorithm being a refinement of the MCS algorithm, it
also implements the two channels philosophy [5]: we deconvolve
simultaneously a background model for the extended sources and an
analytical model for the point sources. The adopted solution uses
some priors on the continuity of the background model to separate
the sources in a very efficient way, allowing a precise separation
between the sources and the background, or between two or more
sources. It becomes really useful when sources are dominating and
close together, like in strong lensing or with a supernova and its host
galaxy.

IV. REGULARIZATION

One of the key challenges in deconvolution is to correctly regular-
ize the problem. Our approach is to adopt a new regularization type,
based on wavelet denoising. This technique preserves the shape of
the underlying model but removes the high frequencies caused by the
noise in the data.

V. SIMULTANEOUS DECONVOLUTION

A major contribution of the MCS algorithm was the simultaneous
deconvolution: the model is built using several images in parallel.
This allows the use of super-resolution, but also the making of light
curves in case of variable point sources. The new algorithm also
implements this feature, but extends it to a higher level. Instead of
using several images from a single instrument (implying the same
sampling, aligned data, etc.), we are now able to combine images
from different instruments, taken at different resolutions and from
different point of view. There is no need to align the images anymore,
and thus to interpolate the data. For instance, combining ground-based
data with HST data is now possible.

VI. APPLICATIONS

Deconvolution is applicable to almost any kind of astronomical
data. We applied this algorithm for the extraction of light curves in
strong lensing as well as on FORS2 data of galaxy clusters. Also,
the Hubble Ultra Deep Field was entirely deconvolved to illustrate
the power of the code with large data, and various applications, like
direct imaging of planets, are in progress.

VII. PACKAGING

Our goal is to propose the software as a free, easy to use PYTHON
package. It implements only basic PYTHON modules but supports
GPU computing for the FFTs, via the CUDA libraries.

VIII. CONCLUSION

We presented a new deconvolution algorithm, implementing all the
key features necessary for an accurate image reconstruction: correct
sampling, efficient regularization, very good point sources handling
and data combination from multiple instruments.
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Abstract—I present a theory for the spatial channel capacity of an
radio interferometer. Modern radio interferometers must handle a large
volume of information, indeed it has been suggested that the SKA
will have a network traffic comparable to the entire Internet. But how
much of this information is actually useful imaging data? I will show
how an array’s configuration and primary element gain determines the
amount of sky information can be extracted by the interferometer. This
approach is roughly analogous to looking at how many megapixels are
photographic camera has, and can be used to assess imaging performance
in interferometers. The results show that minimum-redundancy arrays
have the largest imaging information capacity. They also suggest that 3D
arrays collect more information from the true image than flat arrays (with
all other design parameters identical), so in other words non-negigable
w-terms in the radio interferometric measurement equation contribute
more information than pure uv-terms.
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We propose a novel regularization method for compressive imaging
in the context of the compressed sensing (CS) theory with coherent
and redundant dictionaries [1]. Natural images are often complicated
and several types of structures can be present at once. It is well known
that piecewise smooth images exhibit gradient sparsity, and that
images with extended structures are better encapsulated in wavelet
frames. Therefore, we here conjecture that promoting average
sparsity or compressibility over multiple frames rather than single
frames is an extremely powerful regularization prior. Define x ∈ RN

to be the image of interest. We propose using a dictionary composed
of a concatenation of q frames, i.e.

Ψ =
1√
q

[Ψ1,Ψ2, . . . ,Ψq], (1)

and an analysis `0 prior, ‖Ψ†x‖0, to promote this average sparsity.
Note on a theoretical level that a single signal cannot be arbitrarily

sparse simultaneously in any pair of frames. For example, a signal
extremely sparse in the Dirac basis is completely spread in the
Fourier basis. As discussed in [2], each frame, Ψi, should be highly
coherent with the other frames in order to have a sparse representation
for the signal. The concatenation of the Dirac basis and the first
eight orthonormal Daubechies wavelet bases (Db1-Db8) represents a
natural choice in the imaging context. The first Daubechies wavelet
basis, Db1, is the Haar wavelet basis and, in particular, can be used as
an alternative to gradient sparsity (usually imposed by a total variation
(TV) prior) to promote piecewise smooth signals. The Db2-Db8
bases are coherent with Haar and Dirac while providing smoother
decompositions.

The proposed approach is defined on the basis of the following
problem:

min
x̄∈RN

+

‖Ψ†x̄‖0 subject to ‖y − Φx̄‖2 ≤ ε, (2)

where the matrix Φ ∈ CM×N identifies the measurement operator,
y ∈ CM identifies the measurement vector and ε is an upper bound
on the `2 norm of the residual noise. The constraint x̄ ∈ RN

+

represents the positivity prior on x. Practically, the algorithm uses
a reweighted approach to approximate `0 minimization by solving a
sequence of weighted `1 problems. The associated reconstruction al-
gorithm is dubbed Sparsity Averaging Reweighted Analysis (SARA).
See [2] for a detailed description of the algorithm. This problem
offers great versatility since one only needs to model correctly
the measurement operator to allow reconstruction from different
sensing modalities. Results comparing SARA to state-of-the-art
reconstruction methods for random Gaussian, spread spectrum, and
random discrete Fourier sampling are reported in [2], [3]. The results
demonstrate that SARA outperforms benchmark methods in all cases.

In the case of radio-interferometric (RI) imaging, under common
assumptions, the measurement equation for aperture synthesis pro-
vides incomplete Fourier sampling of the image of interest. Since

the measured visibilities provide continuous samples of the frequency
plane, an interpolation operator needs to be included in Φ to model
the map from a discrete frequency grid onto the continuous plane
so that the FFT can be used. Direction dependent effects can also
be included in the model as additional convolution kernels in the
frequency plane. We here illustrate the performance of SARA in
this field by recovering the well known test image of the M31
galaxy from simulated continuous visibilities affected by 30 dB of
input noise, and using the Dirac-Db1-Db8 concatenation highlighted
for Ψ. For comparison, we also study a variety of sparsity-based
image reconstruction algorithms, some of which were identified
as providing similar performance as CLEAN and its multi-scale
versions, which are state of the art in RI imaging. SARA is compared
with the following minimization problems: (i) BP, constrained `1-
minimization in the Dirac basis (similar to CLEAN), (ii) BPDb8,
constrained analysis-based `1-minimization in the Db8 basis (similar
to multi-scale CLEAN), and (iii) TV, constrained TV-minimization.
Figure 1 shows preliminary results of a reconstruction from a realistic
radio telescope sampling pattern. SARA provides not only a drastic
SNR increase but also a significant reduction of visual artifacts
relative to all other methods. Note that all these algorithms are
currently being implemented in a new package written in C named
PURIFY.

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1. From left to right, top to bottom: Fourier sampling profile, original
test image and reconstructions for SARA (13.35 dB), TV (11.44 dB), BPDb8
(11.13 dB) and BP (8.19 dB) in log10 scale.
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Accelerated Bayesian inference using nests and nets
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Abstract—Bayesian inference methods are widely used to analyse
observations in astrophysics and cosmology, but they can be extremely
computationally demanding. New methods have been developed, however,
for greatly accelerating such analyses, by up to a factor a million, using
nested sampling methods and neural network training algorithms, such as
the MULTINEST and SKYNET packages, respectively. These have recently
been combined into the BAMBI algorithm, which fully automates the
process and accelerates Bayesian inference still further. These generic
approaches are illustrated in a cosmological case study.

Bayesian inference methods are widely used in astronomy and
cosmology, and are gaining popularity in other fields, such as particle
physics phenomenology. In general, they are used to perform two
main tasks: parameter estimation and model selection.

In estimating a set of parameters Θ in a model (or hypothesis) H
for the data D, inferences are usually obtained by taking samples
from the (unnormalised) posterior distribution of the parameters,
using standard Markov Chain Monte-Carlo (MCMC) sampling meth-
ods, usually based on the Metropolis–Hastings algorithm or one of
its variants, where at equilibrium the chain contains a set of samples
from the parameter space distributed according to the posterior. The
posterior constitutes the complete Bayesian inference of the parameter
values, and can be marginalised over each parameter to obtain
individual parameter constraints. The factor required to normalize the
posterior over Θ, known as the evidence, is usually ignored, since it
is independent of the parameters Θ.

By contrast, in selecting which of a set of competing models {Hi}
is the most probable given the data, the evidence takes the central
role. As the average of the likelihood over the prior, the evidence
is larger for a model if more of its parameter space is likely and
smaller for a model with large areas in its parameter space having
low likelihood values, even if the likelihood function is very highly
peaked. Thus, the evidence automatically implements Occam’s razor.
The question of model selection between two models H0 and H1 can
then be decided by comparing their respective posterior probabilities
given the observed data set D.

Both the exploration of the multi-dimensional (unnormalised)
posterior distribution in the parameters Θ, and the evaluation of
the evidence, i.e. the integral of this distribution over the parameter
space, are challenging numerical tasks. Standard MCMC techniques
for exploring the posterior can be extremely computationally intensive
and often need to be finely tuned in order to produce accurate
results. Additionally, sampling efficiency can be seriously affected
by multimodal distributions and long (curving) degeneracies in the
parameter space. Furthermore, in model selection, the task of eval-
uating the Bayesian evidence, using the most common method of
thermodynamic integration, typically requires a order-of-magnitude
more computation than merely exploring the posterior. Fast methods
of evidence calculation, such as assuming a Gaussian approximation
to the posterior, clearly fail in multimodal and degenerate situations.

Nested sampling, introduced by [1], is an alternative Monte Carlo
method, which is targeted at the efficient calculation of the evidence,
but also produces posterior inferences as a by-product. [2] and [3]
have built on this nested sampling framework and have introduced

the MULTINEST algorithm, which is very efficient at sampling
from potentially multimodal and/or degenerate posteriors, and also
calculates the evidence. The method has reduced the computational
cost of Bayesian parameter estimation and model selection typically
by a factor of ∼ 100 in a wide range of problems in astrophysics
and particle physics phenomenology.

For any sampling method, however, at each sampled point in
the parameter space, one must evaluate the posterior distribution.
The prior is usually simple to evaluate, but the likelihood, which
embodies the entire prediction and measurement process that maps
parameters into observed quantities, can be computationally very
expensive to calculate. In some cosmological and particle physics
applications, evaluation of the likelihood requires up to tens of
seconds. Considerable gains can be achieved if one can speed up the
evaluation of the likelihood itself. An artificial neural network (NN) is
ideally suited to learn this mapping, since a universal approximation
theorem assures us that one can always approximate the likelihood
to any required accuracy. The SKYNET algorithm uses a variant of
conjugate-gradient descent to train NNs using regularisation of the
likelihood and a Hessian-free second-order approximation to improve
convergence. Replacing the original likelihood with a trained NN can
speed up its evaluation by a factor of up to ∼ 104.

Recently, [4] combined MULTINEST with the SKYNET neutral
network training algorithm to produce the blind accelerated multi-
modal Bayesian inference (BAMBI) algorithm. After an initial set
of new samples from MULTINEST have been obtained, BAMBI
uses SKYNET to train a network on the likelihood function. After
convergence, the ability of the network to predict likelihood values
to within a specified tolerance level is tested. If it fails, sampling
continues using the original likelihood until enough new samples
have been made for training to be done again. Once a network is
trained that is sufficiently accurate, its predictions are used in place of
the original likelihood function for future samples for MULTINEST.
Using the network typically reduces the likelihood evaluation time to
milliseconds, allowing MULTINEST to complete the analysis much
more rapidly. As a bonus, the user also obtains a network that is
trained to easily and quickly provide more likelihood evaluations near
the peak if needed, or in subsequent analyses. In this way, BAMBI
both automates and enhances the acceleration process, yielding an
overall speed-up of up to a factor of ∼ 106.
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Methods for detecting the 3D percolation of photons in the
early universe.
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I. ABSTRACT

Fundamental astrophysical questions can be answered by a new
kind of radio interferometer (cf MWA, LOFAR, PAPER) which takes
advantage of advances in computing power to dramatically increase
the number of correlated antennae. The Epoch of Reionization, when
photons ionized the intergalactic hydrogen in a collection of bubbles
which quickly percolated through the observable universe, is one
such area. These new types of arrays have extraordinary promise
but violate many basic assumptions in how they measure the sky.
However, the signals are also different. The phenomena under study
is three dimensional in nature and dominated by smooth emission
with sharp edges, rather than astronomical objects of limited extent.
The fundamental reionization measurement is a spatial-spectral cube
which corresponds, via hubble’s law, to three physical dimensions.
Finally, the signal is exceedingly faint, requiring an optimized sta-
tistical approach. Despite this non-Gaussian nature of the signal,
early instruments plan to focus on the power spectrum. We will
describe the various methods currently being used to detect these
three-dimensional signals and examine possible alternatives. Given
the experimental nature of this ongoing work we will also include
several examples taken from recent measurements.
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Abstract—Graphical processing units (GPUs) are massively parallel
processors that have been used to accelerate computations in other areas
of physics by 10-100 times. Many of the tasks in optical interferometric
image reconstruction and model fitting are trivially parallel and therefore
ideal candidates for acceleration using GPUs. Our initial experimentation
with these methods in the GPu Accelerated Image Reconstruction
(GPAIR [1]) program achieved a speed up of more than 100 times
on the GPU compared to a CPU. In this talk, I will present the
architecture of GPUs, contrast GPU and CPU programming, and discuss
how our OpenCL Interferometry Library (liboi) addresses many of the
computational demands for image reconstruction and modeling of the
soon-to-be online “next generation” of beam combiners.

I. INTRODUCTION

Within the next two years all but one optical interferometric
(OI hereafter) arrays will hosts beam combiners capable of joining
the light from four or more telescopes, potentially at high spectral
dispersion. These devices are ideally suited for imaging. Our experi-
ence with six telescope, low spectral dispersion data from CHARA-
MIRC show current software takes about one minute to reconstruct
a grayscale image. With an increasing number of data and the desire
to reconstruct spectrally-dependent data sets, one can anticipate that
run time will quickly scale to hours our days. Indeed, in the 2010
Optical Interferometry Beauty contest [2], the winning software took
24 hours to reconstruct an initial grayscale image from the medium
resolution (R ∼ 1500) data set and eventually had to resort to
considering each spectral channel independently without any cross
wavelength regularization. Active work in spectral regularization [3]
will make spectrally dispersed OI image reconstruction more robust;
however, it is unlikely that any new algorithms will dramatically
reduce the required run time. Graphical Processing Units offer a
potential solution to long run times by splitting computational tasks
over hundreds to thousands of processors.

II. GRAPHICAL PROCESSING UNITS

Graphical Processing Units (GPUs) are massively parallel compu-
tational platforms. GPUs are designed for high-throughput computing
without a need for a hierarchy of cache. They feature memory
accessed through a high-bandwidth, parallel bus and an array tens to
hundreds of multiprocessors. Each multiprocessor is, in turn, com-
posed of several simple processors, a small amount (∼ 16 kb) of on-
chip programmer-managed memory, and one to four transcendental
processing units. Because of this arrangement, GPUs are well suited
to trivially parallel problems which can exploit single instruction
multiple data (SIMD) architecture.

GPUs are programmed by either the Compute Unified Device
Architecture (CUDA) which runs on only NVidia hardware or the
Open Compute Language (OpenCL) which runs on a heterogeneous
environment of GPUs, CPUs, and specialized hardware devices. Both
APIs are extended version of C99 in which you write functions, called
“kernels,” which execute on the GPU.

III. OPENCL INTERFEROMETRY LIBRARY (LIBOI)

Continuing our work with GPUs and interferometry, we have
segmented the GPU-accelerated portion of GPAIR, and created a
dedicated C/C++ library liboi [4]. This library implements com-
mon functions used in OI imaging and modeling; including image
normalization, Fourier transforms, OI data creation, and chi-squared
evaluation. The API is quite powerful as it provides both high and
low-level functionality. A programmer can leverage the power of
GPU computing by simply loading the library, providing it the path
to a data file, and generating a floating point image. In the most
extreme case, the programmer can control the order of execution
of liboi’s kernels and even inject new kernels derived from existing
classes. liboi is available on GitHub and distributed under LGPL.

IV. NEW SOFTWARE

To demonstrate the power of liboi we have created a new model
fitting program called the SImulation and Modeling Tool for Optical
interferometry (SIMTOI [5]). This program attempts to offload as
much computation to the GPU as possible. It renders physically
informed geometric models using OpenGL and utilizes liboi to
compute and compare the model with observed interferometric data.
The parallel portions of this program are nearly 100 times faster than
a CPU-only implementation.

V. FUTURE PLANS

liboi presently uses a discrete Fourier transform to compute the
complex visibilities used in the rest of the code. We intend to im-
plement a non-uniform fast Fourier transform and provide additional
kernels as requested by the broader interferometric community.
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Abstract—One of the main challenges of modern cosmology is to
understand the nature of the mysterious dark energy which causes the
cosmic acceleration. The Integrated Sachs-Wolfe (ISW) effect can be
considered as an independent signature of dark energy. The ISW can
be detected by cross-correlating Cosmic Microwave Background (CMB)
with Large Scale Structure (LSS) data. The ISW effect occurs on large
scales, where there are large amounts of missing data in both CMB
and LSS maps due to Galactic confusion. This severely limits signal
extraction. We propose a novel method to detect and measure the ISW
signal. This method requires use of full sky data for the analysis. To
address the problem of sky coverage, we use a sparse inpainting method
to reconstruct missing data in both the CMB and the LSS data. With our
method, we can expect a ∼ 4.7−7σ detection of the ISW with upcoming
data.

I. INTRODUCTION

The recent abundance of cosmological data in the last few decades
(for an example of the most recent results see 1; 2; 3) has provided
compelling evidence towards a standard concordance cosmology, in
which the Universe is composed of approximately 4% baryons, 26%
‘dark’ matter and 70% ‘dark’ energy. One of the main challenges of
modern cosmology is to understand the nature of the mysterious dark
energy which drives the observed cosmic acceleration (4; 5) .

The ISW (6) effect is a secondary anisotropy of the CMB, which
arises because of the variation with time of the cosmic gravitational
potential between local observers and the surface of last scattering.
The potential can be traced by LSS surveys (7), and the ISW
effect is therefore a probe which links the high redshift CMB with
the low redshift matter distribution and can be detected by cross-
correlating the two. The ISW effect occurs on large scales, where
cosmic variance is high and where there are large amounts of missing
data in the Cosmic Microwave Background (CMB) and Large Scale
Structure (LSS) maps due to Galactic confusion from our Milky
Way. Moreover, existing methods in the literature often make strong
assumptions about the statistics of the underlying fields or estimators.
Together these effects can severely limit signal extraction.

We aim to define an optimal statistical method for detecting the
ISW, which can handle large areas of missing data and minimise
the number of underlying assumptions about the data and estimators.
We first review current detections (and non-detections) of the ISW
effect, comparing statistical subtleties between existing methods, and
identifying several limitations. We propose a novel method to detect
and measure the ISW signal. This method assumes only that the
primordial CMB field is Gaussian, but requires use of full sky data
for the analysis. In order to address the problem of sky coverage, we
use a sparse inpainting method to reconstruct missing data in both the
CMB and the LSS data. We also use a bootstrap technique to avoid
assumptions about the statistics of the estimator. It is a complete
method, which uses three complementary statistical methods.

In light of the upcoming Euclid mission satellite, which will

provide wide-field LSS data over the redshift range ideal for ISW
detection, we apply our method to Euclid-like simulations. We show
we can expect a ∼ 7σ model-independent detection of the ISW
signal with WMAP7-like data, even when considering missing data.
Other tests return ∼ 4.7σ detection levels for a Euclid-like survey.
We find detections levels are independent from whether the galaxy
field is normally or lognormally distributed. We apply our method
to the 2 Micron All Sky Survey (2MASS) and WMAP7 CMB data
and find detections in the 1.1 − 2.0σ range, as expected from our
simulations. As a by-product, we have also reconstructed the full-sky
temperature ISW field due to 2MASS data. The ISW map can be
used to further study statistical isotropy and reported deviations from
statistical isotropy (so called ‘anomalies’) in the primordial CMB.
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Abstract—In field of radio astronomy one of the challenges is removing
the man–made RF interference. Subspace and model based filters have
proven to be very powerful tools for RFI mitigation. However most of
the time they require the antenna array to be calibrated. Here we use an
extended version of Factor Analysis model that includes a more general
covariance model to estimate the RFI free covariance matrix produced
by sky sources. This method produces ML estimations for the interferer
subspace, power and the unknown sky sources simultaneously.

I. INTRODUCTION

Most of the current radio telescopes use interferometry to produce
images of the sky and use array of antennas to this end. The radio
frequencies used for radio astronomy are usually occupied by man–
made interference that needs to be removed. In previous works the
advantage of using reference antenna especially with spatial filter is
demonstrated [1]. However in order to find the spatial signature of
the interferer it is assumed that the noise covariance matrix is known
and then EVD is used to find the corresponding subspace. If the noise
characteristics are unknown and/or the array is not calibrated, EVD
or SVD will not in general find the correct subspace, to overcome this
we propose an extended version of factor analysis model to estimate
the subspace and power of the RFI simultaneously.

II. DATA MODEL AND ESTIMATION STRATEGY

Following [1] we assume to have a radio telescope with p0

elements observing the sky (primary array) and a reference array
of p1 elements that only receives the interfering signals because the
sky sources are generally very weak. In total we have p = p0 + p1

elements that collect data. The output of the primary and secondary
array can be modeled as

x0(t) = v(t) + n(t) + A0s(t), (1)

x1(t) = A1s(t) + n1(t), (2)

where x0 is a p0×1 vector obtained by stacking the signals from each
receiving element of the primary array, v is the signal contribution
of sky sources, n is the noise contributions on the primary array, A0

is a p0 ×m primary array response, s is a m×1 vector representing
the interfering signals with Rs as covariance matrix, x1 is a p1 × 1
vector of received signals, A1 is the secondary array response and
n1 is the noise contribution on the secondary array and its covariance
matrix is Rn. The covariance matrix of the interference free signal
is given by Φ00 = E

{
(v + n)(v + n)H

}
.

The total system can be modeled by stacking x0 and x1 and the
total covariance matrix could be partitioned as

R =

[
Φ00 + A0RsA

H
0 A0RsA

H
1

A1RsA
H
0 A1RsA

H
1 + Rn1

]

=

[
A0

A1

]
Rs

[
AH

0 AH
1

]
+

[
Φ00 0
0 Rn1

]
. (3)

Based on this model we are interested in finding the Φ00 which
is the RFI free covariance matrix. If we assume that the noise is
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Fig. 1. EFA filtering

uncorrelated between the elements of secondary array and we let

A =

[
A0

A1

]
R

1/2
s we can model the covariance matrix as

R = AAH + M ⊙ Rn, (4)

with M =

[
1p01

H
p0

0
0 Ip1

]
.

This is the Extended Factor Analysis model [2] which is an en
extension of a multivariate technique called Factor Analysis to non–
diagonal noise covariances and we will use this to find Φ00.

In order to make sure that the secendary array does not see the
sky sources and depending on the stationarity of interferer we divide
the whole integration time (∼ 10s) into small snapshots (∼ 10ms),
for each snapshot we estimate Φ̂00 which is the upper sub–matrix of
M ⊙ Rn at each snapshot.

Given K snapshots of length N we try to estimate Φ̂00 using (4).
The length N is chosen such that the contribution of sky sources on
secondary array is negligible. As discussed in [2] there is no closed–
form solution for ML FA and iterative approaches are needed. For
each snapshot R̂k = 1/N

∑N
n xnxH

n we need to estimate Âk and
R̂nk. For this purpose we use various iterative methods like WALS,
scoring and steep methods. The matrix Φ̂00k is then the upper left
sub–matrix of R̂nk. We take the average of these RFI free estimates
to produce the long integration estimate Φ̂00 = 1

K

∑K
k Φ̂00. This

RFI free result can now be used for further calibration or imaging.

III. EXPERIMENTAL DATA

The test setup is provided by ASTRON research institute in the
Netherlands. It uses 4 parabolic dishes from the Westerbork radio
telescope one of which has a receiver array in its focus and will be
set off–target and used as reference antenna while the other three will
track sky source 3C48. Two man made sources (satellites) are causing
interference as is shown in Fig. 1 (right). The total integration time is
about 13s and it is divided in 64 snapshots of about 200ms then for
each snapshot the EFA model is computed. The 3C48 has an almost
flat spectrum in the measured frequency band which is divided into
sub–bands of about 10 kHz. Fig. 1 (left) shows the result of filtering
as described above.
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Challenges of radio interferometric imaging in the SKA era
Oleg Smirnov∗

∗ Rhodes University, South Africa

Since it’s conception over 20 years ago, the Square Kilometre
Array project has driven research into new calibration and imaging
techniques. In the past decade, this has been accelerated by the new
crop of “SKA pathfinder” telescopes. I will present a basic overview
of radio interferometric imaging, and then focus on the specific new
problems raised by the increased sensitivity and capabilities of the
new telescopes, and in the future the SKA itself. Besides the obvious
computational and data volume problems (simple scaling laws show
that SKA will require a world-class supercomputer just to do basic
imaging), there are a number of new algorithmic problems, as well as
subtle instrumental effects exposed by the increased sensitivity and
new observational regimes of modern instruments.

In the second part of the talk, I will focus on a specific class of
problems related to primary beams (PBs). The term “PB” refers to
the spatial sensitivity pattern of an individual interferometer element.
This pattern serves to attenuate radiation from regions outside the
field-of-interest, which simplifies the imaging problem considerably.
Classic interferometry assumes a stable and restricted PB pattern
that is identical across all elements; deviations from this assumption
introduce subtle imaging artefacts, which we could afford to ignore
at the lower sensitivities of older instruments. With new telescopes,
the intrinsic sensitivity is high enough that these artefacts could in
fact become the major performance limits. In this presenation, I will
explore these limits and discuss how they could be addressed in
practice.
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Cosmic Microwave Background Sparse Recovery and Analysis
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ABSTRACT

Cosmic Microwave Background (CMB) temperature anisotropies
and polarisation measurements have been one of the key cosmolog-
ical probes to establish the current cosmological model. The ESA
PLANCK mission is designed to deliver full-sky coverage, low-noise
level, high resolution temperature and polarisations maps. We will
briely review some of the key problem of the PLANCK data analysis,
and we will present how sparsity can be used to analyze such data
set..
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Abstract—We present a few implementations of A-Projection [1]
applied to LOFAR, that can deal with non-unitary station beams and
non-diagonal Müeller matrices. The algorithm is designedto correct for
all the DDE, including ionospheric effects, but we focus ourattention on
the correction of the phased array beam patterns. They include individual
antenna, projection of the dipoles on the sky, and up to a few levels of
phased arrays. We describe a few important algorithmic optimizations
related to LOFAR’s architecture, that allowed us to build a fast imager.
We will use it for the construction of the deepest extragalactic surveys,
comprising hundreds of days of integration.

I. I NTRODUCTION

With the building or development of many large radio telescopes
(LOFAR, EVLA, ASKAP, MeerKAT, MWA, SKA, e-Merlin), radio
astronomy is undergoing a period of rapid development. New issues
arise with the development of these new types of interferometer, and
the approximations applicable to the older generation of instruments
are not valid anymore. Specifically, they have wide fields of view
and will be seriously affected by the Direction Dependent Effects
(DDE). Dealing with the DDE in the framework of calibration and
imaging represents an unavoidable challenge, on both the theoretical,
numerical and technical aspects of the problem.

This is particularly true for the Low Frequency Array (LOFAR).
It is an instrument that observes in a mostly unexplored frequency
range (ν < 240 MHz), and will be one of the largest radio telescopes
ever built in terms of collecting area. LOFAR’s design is built on
a combination of phased array and interferometer. It is madeof 40
stations in the Netherlands, and 8 international stations (5 in Germany,
1 in France, England, and Sweden). The High Band Antenna stations
(110-240 MHz, HBA hereafter) are made of 24 to 96tiles of 4 × 4
antenna coherently summed, while the Low Band Antenna (10-80
MHz, LBA) are clustered in groups of 96 elements. At the station
level, the signals from the individual antennas or tiles (inthe cases
of LBA and HBA respectively) are phased and summed by thebeam
former. This step amounts to forming a virtual antenna pointing at
the targeted field location. The data is transported from thevarious
stations of the LOFAR array to the correlator. LOFAR is affected by
many complex baseline-time-frequency dependent DDE, including
mainly the antenna/station beams and the ionosphere, whichvaries
on angular scales of degrees and time scales of∼ 10 minutes and
∼ 30 seconds respectively. We currently have models of both the
high-band and low-band station beams (HBA and LBA respectively).

As shown in [1] A-Projection allows to estimate sky images, taking
into account all the possible complicated effects associated to the
DDE. However contrarily to dishes-based interferometers,where the
beam shape and polarization angle are affected by pointing errors
and rotated on the sky by the paralactic angle (depending on the
dishes mount), LOFAR is based on phased arrays that have very
wide fields of view (up to∼ 12 degrees), non-trivial and quickly
varying beams, thereby driving complicated polarization effects.

Technically speaking, the very fields of view instrument that aim
to reach high dynamic range have to deal with baseline-dependent
non-diagonal Müeller matrices. For the VLA implementation, due to
the approximateUnitarity of VLA beams, it was sufficient for A-
Projection to take into account the diagonal terms of the Müeller
matrices to demonstrate corrections for instrumental polarisation.
That is not possible for LOFAR, that has heavily non-unitarybeams
and non-diagonal baseline-associated Müeller matrices,and all4× 4
Müeller terms have to be taken into account.

We show in this paper that the scheme described in [1] can
indeed deal with the heavily non-unitary beams associated with the
very-wide fields of view of phased arrays. We will describe the
issues related with the usage of phased arrays in interferometers, and
focus on the LOFAR-related issuesie the polarization aspects and
baseline-dependence of the DDE. We will discuss our resultsbased
on simulations.
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Abstract—Image reconstruction from interferometric data is an inverse
problem quite similar to 2D imaging in X-ray tomography. Astronomical
interferometers however give very sparse data and strict constraints such
as non-negativity or the priors set by the regularization are crucial
ingredients of a successful image reconstruction algorithm. At optical
wavelengths, atmospheric turbulence is responsible of random optical
path fluctuations which can only be avoided by integrating estimators
such as the powerspectrum or the bispectrum (2 and 3 points correlations)
insensitive to such errors. This however augments the amount of missing
information and makes the image reconstruction more non-linear and
thus more difficult. Different priors and optimization strategies to solve
the resulting inverse problem have lead to the various existing algorithms.
A new challenge is now to deal with multi-spectral data provided by most
current interferometers and develop 3D (x, y, λ) imaging algorithms.

Ideally the coherent recombination of two telescopes, say j1 and
j2, of a stellar interferometer yields the complex visibility:

Vj1,j2(λ, t) = Îλ(νj1,j2(λ, t)) (1)

with Îλ(ν) the angular Fourier transform of the specific brightness
distribution Iλ(θ) of the observed object and:

νj1,j2(λ, t) = (rj2(t)− rj1(t))/λ (2)

a particular spatial frequency which depends on rj the position
of jth telescope projected on a plane perpendicular to the line of
sight, λ the wavelength and t the time. In practice, random optical
path fluctuations due to the atmospheric turbulence introduce phase
distortion terms in the instantaneous complex visibility.

At long wavelengths (radio interferometry) where the effects of the
turbulence evolve very slowly, the complex visibilities can be inte-
grated and Fourier transformed to form the so-called dirty image of
the object. Then, image reconstruction amounts to the deconvolution
of the dirty image given the dirty beam which is the analoguous of
the point spread function (PSF) in more conventional imaging. When,
due to the turbulence, exact calibration of the PSF is not possible,
self-calibration has been proposed to recover it jointly with the image
[1]. This is similar but, due to the more limited number of degrees
of freedom, much easier than blind deconvolution.

At short wavelengths (infrared and visible), the random phase
fluctuations are more important and change very quickly which forbid
to directly measure the complex visibility. Hence, in the optical, other
estimators have to be used, such as the powerspectrum:

Pj1,j2(λ, t) = |Îλ(νj1,j2(λ, t))|2 , (3)

or the bispectrum:

Bj1,j2,j3(λ, t) = Îλ(νj1,j2(λ, t)) Îλ(νj2,j3(λ, t)) Îλ(νj3,j1(λ, t)) .
(4)

These quantities are insensitive to telescopewise phase errors but
provide only partial Fourier phase information.

Whatever the wavelength, the interferometric data only provide a
sparse sampling of the angular spatial frequencies of the object. To
supplement the missing data, additional a priori information has to be

taken into account to ensure a unique and stable image reconstruction.
Without loss of generality, image synthesis can be stated as seeking
for the object brightness distribution which agrees the most to the
priors while being compatible with the measurements:

x+ = argmin
x∈X

fprior(x) s.t. fdata(x) ≤ η (5)

with x the image parameters (e.g., the pixel values), X the set of
feasible parameters, fdata : X 7→ R a likelihood term penalizing
the discrepancy of the model with the data and fprior : X 7→ R a
regularization term to enforce the priors. The feasible set X may be
used to enforce strict constraints such as the non-negativity and the
normalization of the parameters; for instance:

X = {x ∈ RN | x ≥ 0,1>· x = ξ} (6)

with N the number of parameters (e.g., pixels), ξ the given image
flux, and 1 the vector of RN which has all its components equal to
one. The constrained problem can be recast as:

xµ = argmin
x∈X

fdata(x) + µ fprior(x) (7)

with µ > 0 a Lagrange multiplier tuned so that fdata(xµ) = η.
Many existing image reconstruction algorithms can be put in the

form of problem (5) or (7). They mainly differ in the type of priors
(strict constraints and regularization), the kind of data taken into
account and the optimization strategy to seek for the solution [2].
Recent progress in optimization methods and compressive sensing
might provide useful sources of inspiration to improve existing
imaging methods or deal with larger or more complex problems such
as multi-wavelength image reconstruction. For instance, the greedy
algorithm of the CLEAN method [3] is equivalent to minimizing an
objective function [4] which can be reformulated as a least `1 problem
solved in a much more efficient way by an implementation of the
alternating direction method of multipliers (ADMM). The flexibility
of ADMM can then be exploited to minimize a joint `1 norm (instead
of a separable one) and recover the spectra and positions of point-like
sources from multi-spectral interferometric data [5].
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Abstract—Preliminary results of a research work at the intersection
between mathematics, physics and computer sciences is presented. It
results from the development of a data model for the radioastronomy.
It is shown that there is a structure, a complex of simplicials, which
is ubiquitous in several domains. From an analysis of the grammar of
the XMLSchema modeling language is derived a formalism including
both the functional and syntactic facets to define what is a type. This
structure is carrier of abstract concepts associated to a logical framework.
A connection with the domain of compress sensing is suggested.

I. I NTRODUCTION

Radio-astronomers have developed a data model to represent
the data acquired by radio-telescopes, especially in the context of
interferometry in aperture synthesis. A major step was achieved
in 2000 with the specification of the MeasurementSet (Kemball
and Wieringa)1. Designed for offline processing it is used for data
reduction by several observatories e.g. ALMA, EVLA. Since 2000
a new model was developed to structure the data during their
acquisition at the telescope, the Alma Science Data Model (ASDM,
Viallefond and Lucas 2006). The ASDM, currently used by ALMA
and the EVLA, reuses most of the concepts specified in the MS.
The most noticeable difference is the introduction of the concept
of configuration, the instruments having multiple processing units
operating in concurrency. Taking the opportunity of a very significant
evolution of the instrumentation, in particular anticipating the context
of SKA, R&D activity is devoted to investigate concepts in the
perspective of a third generation model. This led to a prototype, the
SDMv2 (Viallefond, 2008, 2013 in prep). The presentation will give
some insights of what is this SDMv2. The most innovative aspect
with the SDMv2 is that it is associated to a mathematical formalism.
By definition generic, this formalism could be of interest far beyond
this specific use-case in radioastronomy.

II. M ETHODOLOGY

A goal is to developefficient, robustand expressivedata models.
The idea is to transform objects described using our human language
into mathematical objects which can then be used efficiently in
information systems. The method is based on the definition of
topological spaces to model data types and their algebra; technically
it is realized using parametric polymorphism. The robustness comes
from coherence conditions verified at compile time. The result is high
expressiveness by formulating equations and data base operations by
mean of typedλ calculi.

III. T HE TOPOLOGY OF THEMS

The presentation will concentrate on one aspect, the topological
structure underlying the MS2 . I’ll explain how I arrived to a 2-
complex of simplicials guided by a discourse describing a state
machine, any measurement instrument reflecting activities through
events, eventually occurring on different time scales. Then I’ll show
that this structure is relevant not only to describe a physical experi-
ment, but also to describe, in particular,a) the instrument itself and
b) the data structure for the reduced data.

1http://casa.nrao.edu/Memos/229.html
2acronym used for what its means, not the name of its grand father

IV. D ISCUSSION

To understand this result which may potentially be useful for
other domains I investigated several directions to better assess its
significance: I made connections with the concepts ofa) partial order
and weak factorization by formulating the binary relation in broad
sense,b) homotopy, the type theory and the identity type[1] andc)
the borromean logic[2].

Transforming objects described by our human language into math-
ematical objects means capturing their semantics and making these
functional, at least locally, a requirement to be constructible. To
appreciate what can be achieved it is useful to understand the model
of the grammar in modeling languages.

Familiar with the XMLSchema language I analyzed its grammar. In
the modeling activity semantic is introduced by defining constraints.
Therefore I have formalized two concepts of that grammar, the
Component and the Uniqueness constraints. It is useful to distinguish
two things, the syntactic approach based on terms defined in a
lexicon, and the semantic typed approach through the classic concept
of inheritance in type hierarchies. Interestingly, to formalize the
Component Model of XMLSchema, I arrived to the same structure
as the one found for the MS. Furthermore, to formalize the concepts
of partition and key also yield to that structure. XML is famous for
being described by itself (XMLSchema is written using XML and
there is a schema of schema). Given the structure found for the MS
we can say now that the grammar is based on a structure which is
identical to the structure of models described using this grammar.

The connection with the language being done this gives a mean to
express what is a type and the identity in a very general framework.

Using these results coming from different domains give insights
about the meaning of this structure as a whole and the reason for its
ubiquity. It is the signature of the tri-partition of a set. I’ll show
that its construction is the result of spatially organizing concepts
following a logical structure. Inspecting the meaning of the nodes in
these different domains in relation to their locations in the structure
reveals systematic abstract properties.

At last, I take the view point that getting an image with an
instrument is the measurement of properties of a relation the image
being the carrier of semantics that we associate to natural phenomena
in our concrete world and that we model on the basis of physical
concepts. The formalism just described is a way to express the fact
that there is a glue between the syntactic and functional approaches.
This gives some insights about the compress sensing strategy, the
syntactic approach used to process very large amounts of data with
high efficiency assuming that there is an assimilation mechanism to
build a lexicon.
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Abstract—In this presentation, I discuss several techniques that could
start the self-calibration process without requiring a sky model. These
techniques either exploit redundancy in the array configuration or aim
to optimize a measure of image quality. In this context, image quality is
usually measured in terms of image contrast or Shannon entropy. After a
brief introduction of these techniques, I comment on their applicability in
future radio telescopes and present open questions, which is particularly
relevant in the context of development of the Square Kilometre Array
(SKA).

I. I NTRODUCTION

The performance of many self-calibration techniques heavily de-
pends on the quality of the initial estimate for the observedscene.
This is equally true for the computational performance and the
estimation performance. In radio astronomy, much effort istherefore
invested in building sky models, that can be used to start theself-
calibration process. In this paper, I discuss two blind self-calibration
techniques, redundancy calibration and calibration basedon image
optimization. The key selling point of blind techniques is that they
do not require prior knowledge on the observed scene. I present
these methods in the radio astronomy context and comment on their
potential use in future radio telescopes like the Square Kilometre
Array (SKA) [1].

II. REDUNDANCY CALIBRATION

The key idea behind redundancy calibration is that the correlation
of signals from pairs of antennas with identical baseline vectors
measure the same spatial frequencies, regardless of the observed
brightness distribution [2]. A baseline vector representsthe difference
between two antenna positions. If the correlations measured on two
identical baselines differ, this is caused by instrumentalartefacts. If
we can assume that all antennas have the same directional response
and that imperfections in the analog electronics have a negligible
impact on the measured correlations, we can use the principle of
redundancy calibration to calibrate the antenna gain and phase.

Placement accuracy is an important consideration in the context
of redundancy calibration to ensure sufficient identicalness of the
redundant baselines. What identicalness is “sufficient”, depends on
the required calibration accuracy. This provides some roomto apply
redundancy calibration to baselines that are only approximately
redundant. We can demonstrate that this can be exploited in initial
calibration in relatively dense irregular arrays [3]. Thisinitial cali-
bration could be used as starting point for a normal self-calibration
process instead of a sky mnodel.

To exploit redundancy in sparse irregular configurations, redundant
baselines probably have to be designed into the system. Since
redundant baselines observe the same spatial frequencies,they do
not provide additional information on the brightness distribution.
An array configuration without redundant baselines may therefore
be more attractive from an imaging perspective. Can we provide
guidelines to make a trade-off between facilitating the calibration
process or facilitating the imaging process?

III. I MAGE OPTIMIZATION

In the absence of noise, the vectorized measured covariancematrix
is described by

vec
“

bR
”

= diag (g ⊗ g)Mσ = Mgσ, (1)

whereg is a vector containing the direction independent sensor gains,
M is the measurement matrix for a perfectly calibrated instrument,
σ is a vector containing image parameters, e.g., wavelet coefficients
or pixel values,⊗ denotes the Kronecker product anddiag(·) forms
a square matrix with its vector argument on the main diagonal. In
the imaging process, (1) is inverted. Assuming thatMg is invertible,
this givesσ = M−1

g = vec
“

bR
”

. SinceMg depends on the gains,
the image can be optimized by finding the right gain values.

What constitutes an optimal image is still a matter of debate.
Contrast optimization is a very intuitive choice that can, for example,
be formulated as

bg = argmax
g

1

〈σ〉
q

˙

(σ − 〈σ〉)2
¸

, (2)

where〈·〉 denotes the averaging operator. Other measures for image
contrast include maximization of the peak value in the image(with an
appropriate constraint on the gain amplitudes, of course).However,
the measure given in (2) seems to be more robust in scenes with
multiple sources [4].

Another, but less developed idea is to maximize the Shannon
entropy of the imageS given by [5]

S = −
X

i

|σi|2
‖σ‖2 log

|σi|2
‖σ‖2 . (3)

It has been demonstrated that maximization of the Shannon entropy
can be used for phase calibration [5], but does it also allow gain
amplitude calibration? Also, more analysis is required to assess the
calibration quality achievable with entropy maximization. This need
not be a problem as long as it provides sufficient gain calibration
accuracy to make a first image that can than be improved using self-
calibration cycles.
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Abstract—In array signal processing, eigenvalue decompositions are
commonly used to analyze covariance matrices, e.g. for subspace esti-
mation. An implicit assumption is that the noise power at each antenna
element is the same. If the array is not calibrated and the noise powers
are different, a Factor Analysis is a more appropriate alternative. It is
not a well-known tool in signal processing.

Factor Analysis proves to be very useful for interference mitigation
in uncalibrated radio astronomy arrays. It also plays a role in image
formation and self-calibration. We will study some of these applications.

I. INTRODUCTION

Factor analysis considers covariance data models where the noise
is uncorrelated but has unknown powers at each sensor, i.e., the noise
covariance matrix is an arbitrary diagonal with positive real entries.
In these cases the familiar eigenvalue decomposition (EVD) has to be
replaced by a more general “Factor Analysis” decomposition (FAD),
which then reveals all relevant information. It is a very relevant model
for the early stages of data processing in radio astronomy, because at
that point the instrument is not yet calibrated and the noise powers
on the various antennas may be quite different.

As it turns out, this problem has been studied in the psychometrics,
biometrics and statistics literature since the 1930s (but usually for
real-valued matrices) [1], [2]. The problem has received much less
attention in the signal processing literature. In this presentation, we
briefly describe the FAD and some algorithms for computing it, as
well as some applications.

II. PROBLEM FORMULATION

Assume that we have a set of Q narrow-band Gaussian signals
impinging on an array of J sensors. The received signal can be
described in complex envelope form by

x(n) =

Q∑

q=1

aqsq(n) + n(n) = As(n) + n(k) (1)

where A = [a1, · · · , aQ] contains the array response vectors. In
this model, A is unknown, and the array response vectors are
unstructured. The source vector s(n) and noise vector n(n) are
considered i.i.d. Gaussian, i.e., the corresponding covariance matrices
are diagonal. Without loss of generality, we can scale the source
signals such that the source covariance matrix is identity.

The data covariance matrix thus has the form

R = AAH + D (2)

where we assume Q < J so that AAH is rank deficient.
Many signal processing algorithms are based on estimates of the

signal subspace, i.e. the range of A. If the noise is white (D = σ2I),
this information is provided by the eigenvalue decomposition of R.
This does not work if the noise is not uniform. The objective of factor
analysis is, for given R, to identify A and D, as well as the factor
dimension Q.

West ← l → East

S
ou

th
 ←

 m
 →

 N
or

th

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

West ← l → East

S
ou

th
 ←

 m
 →

 N
or

th

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.65

0.7

0.75

0.8

West ← l → East

S
ou

th
 ←

 m
 →

 N
or

th

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

Fig. 1. (a) Calibrated all-sky map for a LOFAR prototype station; (b) image
of Rn, corresponding to baselines shorter than 4 wavelengths; (c) image of
the residual.

III. RESEARCH ISSUES

Issues to be discussed in the presentation are:

1) Identifiability: What constraints provide unique results; what is
the maximal factor rank;

2) Detection: how can the factor rank be determined;
3) Estimation: how can the factors be estimated.

Some answers are obtained by viewing the problem as a form of
covariance matching (cf. [3]). An extension of the data model is

R = AAH + Rn

where Rn is a band matrix. This can be further generalized to more
general (sparse) Rn with known locations of the nonzero entries.

IV. APPLICATIONS TO RADIO ASTRONOMY

In the context of radio astronomy, factor analysis shows up in
a number of applications, see [4] for an overview. Interference
cancellation is demonstrated in the accompanying poster presentation.
A rank-1 factor analysis problem occurs in the calibration of an array
of telescopes pointing at a single calibrator source [5]. As application
of the extended factor analysis problem, consider a field with point
sources and an extended emission [6]. The extended emission has
mostly effect on the short baselines (a band matrix of sorts) whereas
the point sources give a low rank contribution. After extended factor
analysis, the two components can be imaged separately. Figure 1
shows LOFAR station data, and the resulting image components.

REFERENCES

[1] D. N. Lawley and A. E. Maxwell, Factor Analysis as a Statistical Method.
Butterworth & Co, London, 1971.

[2] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis.
Academic Press, 1979.

[3] B. Ottersten, P. Stoica, and R. Roy, “Covariance matching estimation
techniques for array signal proce ssing applications,” Digital Signal
Processing, A Review Journal, vol. 8, pp. 185–210, Jul. 1998.

[4] A. J. van der Veen and S. J. Wijnholds, “Signal processing tools for
radio astronomy,” in Handbook of Signal Processing Systems, 2nd ed.,
S. Bhattacharryya, Ed. Springer, Feb. 2013, p. (40 pp.).

[5] A. J. Boonstra and A. J. van der Veen, “Gain calibration methods for
radio telescope arrays,” IEEE Trans. Signal Processing, vol. 51, no. 1,
pp. 25–38, Jan. 2003.

[6] S. J. Wijnholds and A. J. van der Veen, “Self-calibration of radio astro-
nomical arrays with non-diagonal noise covariance matrix,” in Proc. 17th
European Signal Processing Conference (EUSIPCO 2009). Glasgow
(UK): Eurasip, Aug. 2009, pp. 1146–1150.

51



The varying w spread spectrum effect
for radio interferometric imaging

Laura Wolz∗†, Filipe B. Abdalla∗, Rafael E. Carrillo‡, Yves Wiaux‡§¶, Jason D. McEwen∗
∗ Department of Physics and Astronomy, University College London, London WC1E 6BT, UK

† Sub-Dept. of Astrophysics, Dept. of Physics, University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
‡ Institute of Electrical Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
§ Department of Radiology and Medical Informatics, University of Geneva (UniGE), CH-1211 Geneva, Switzerland

¶ Department of Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland

Abstract—We study the impact of the spread spectrum effect in
radio interferometry on the quality of image reconstruction. This spread
spectrum effect will be induced by the wide field-of-view of forthcoming
radio interferometric telescopes. The resulting chirp modulation improves
the quality of reconstructed interferometric images by increasing the
incoherence of the measurement and sparsity dictionaries. We extend
previous studies of this effect to consider the more realistic setting where
the chirp modulation varies for each visibility measurement made by the
telescope. In these first preliminary results, we show that for this setting
the quality of reconstruction improves significantly over the case without
chirp modulation and achieves almost the reconstruction quality of the
case of maximal, constant chirp modulation.

I. INTRODUCTION

The next generation of radio interferometers will see a large field
of view. Consequently, the planar interferometric imaging setting
considered typically needs to be adapted to a wide field-of-view by
incorporating the so-called w-term component, introducing a chirp
modulation.

II. COMPRESSED SENSING IN RADIO INTERFEROMETRY

Previous studies have shown the power of the compressed sensing
formalism in radio interferometric imaging [1]–[4]. Radio interferom-
eters acquire incomplete Fourier measurements, so-called visibilities,
of the image on the sky under observation. Recovering an image from
the visibilities measured by the telescope is hence an ill-posed inverse
problem, which is solved through convex optimisation methods (e.g.
[1], [3]).

A crucial factor controlling the fidelity of reconstruction in this
approach is the incoherence of the measurement and sparsity dic-
tionaries. In the wide field-of-view setting, the chirp modulation
that is induced acts to increase incoherence. For radio interferom-
etry, the measurement basis can essentially be identified with the
Fourier basis. In this case the coherence is given by the maximum
modulus of the Fourier coefficient of the sparsity atoms. The chirp
modulation corresponds to a norm-preserving convolution in Fourier
space, spreading the spectrum of the sparsity atoms, thus reducing
the maximum modulus of their Fourier coefficients and increasing
incoherence. The increased incoherence due to this spread spectrum
effect acts to improve the fidelity of image reconstruction [3].

III. FIRST RESULTS AND OUTLOOK

In this preliminary work we first confirm previous results [3] that
demonstrate the effectiveness of the spread spectrum phenomenon,
however here we consider more realistic interferometric images and
alternative sparsity dictionaries. We then extend the constant chirp
analysis of previous studies [3], [4] to the more realistic setting
where every measurement in the (u, v)-space of visibilities undergoes
a different w-term modulation. This is a computationally demanding
setting which we address by incorporating the w-projection algorithm
[5] into our framework. We consider uniform visibility sampling in
(u, v) and w, with w samples ranging from zero to 2/L times the
maximum values of u and v, where L corresponds to the size of
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Fig. 1. Signal-to-noise ratio of the recovered image of M31 with Daubechies
8 wavelets for no chirp (blue, dashed), a constant maximal chirp (magenta,
dash-dotted) and a varying w-modulation (red, solid) as a function of visibility
coverage.

the field-of-view (identical to the maximum w considered previously
[3]). We denote the w range by the discrete component 0 < wd < 1
respectively. Hence, wd = 0 corresponds to no chirp modulation,
wd = 1 corresponds to the maximal chirp modulation studied
previously [3], and the range 0 < wd < 1 corresponds to uniformly
random sampling over the entire range.

Preliminary results on a small test image of an HII region of M31
(see e.g. [2]) of dimension 120×120 pixels show that reconstruction
fidelity is significantly improved compared to the analysis without
chirp modulation when using Daubechies 8 wavelets (see Fig. 1),
extending previous findings to more realistic images and alternative
sparsity dictionaries. Furthermore, Fig. 1 shows that reconstruction
fidelity for the varying w case is almost as good as the constant,
maximal chirp modulation. The study of the varying w spread
spectrum effect in the context of the SARA algorithm [2] is ongoing.
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Abstract—In this work, we extend a separate magnitude-phase reg-
ularization framework for Phase Contrast MRI by incorporating the
divergence-free condition.

Introduction: 3D phase-contrast (PC) MRI is a powerful tool to
assess hemodynamic parameters. However, this method is hampered
by long acquisition times and residual phase errors due to system
imperfections. The latter can be adressed by incorporating physical
priors. In [1] the reconstructed vector field was processed to ap-
proximate incompressibility of blood using normalized convolution
and divergence-free basis functions. Using compressed sensing (CS)
for scan acceleration, regularizers are often designed for magnitude
reconstruction [2], and therefore, may not be robust for phase
encoding. In [3] it was demonstrated that improved phase accuracy
can be achieved by separate magnitude and phase regularization. In
this work, we extend this framework for PC MRI by incorporating
the divergence-free and smoothness condition of the velocity flow
field.

Theory: In a 4-point PC experiment, the velocities at position
r along three orthogonal (i = 1, 2, 3) directions are given by
vi(r) = (φi(r) − φ0(r))/kv,i. φi and φ0 denotes the phase of
the velocity encoded ρi(r), and reference image ρ0(r), respectively.
kv,i is the first moment of the applied bipolar gradient along i.
Using incoherent undersampling and collecting all four images into
ρ ∈ C4n and the acquired k-space samples into d ∈ C4m, the
separate magnitude-phase reconstruction problem is initialized with
the solution minimizing the following convex baseline cost function:

Ψ1(ρ) =
1

2
‖d − (I4 ⊗E)ρ‖22 + λ1‖(I4 ⊗B)ρ‖1

+ λ2‖(H ⊗ In)ρ‖1, (1)

with encoding matrix E relating the reconstructed images to the
acquired k-space trajectory, B an operator implementing several
sparsifying transforms andH the last 3 rows of the Hadamard matrix,
producing sparse complex difference images with signal concentrated
in the vessels. The image is then decomposed into its magnitude
mj ∈ R, and phase component θj = eiϕj ∈ C, s.t. ρ = m ◦θ. Both
components are reconstructed by minimizing the cost function,

Ψ2(m,θ) =
1

2
‖d − (I4 ⊗E)(m ◦ θ)‖22 + λ1‖(I4 ⊗B)m‖1

+ λ2

3∑

i=1

‖mi −m0‖1 +R(ϕ), (2)

with separate phase regularization

R(ϕ) = λ3

∥∥∥ω ◦
( 3∑

i=1

∇i(ϕi −ϕ0)
)∥∥∥

2

2
+ λ4

3∑

i=1

‖C(ϕi −ϕ0)‖22,

where ω ∈ {0, 1}n is a masking vector, ∇i the gradient operator
along i and C the 3D finite difference matrix penalizing divergence
and enforcing smoothness of the vector field, respectively.

Methods: Simulated PC MRI data with phase wraps was generated
using a computational fluid dynamic (CFD) vector field in a U-bend.
Gaussian noise was added (SNR = 30) and the resulting reference
images were projected on 8-fold undersampled radial trajectories in
3D k-space. Reconstruction was then performed on the reduced data
by subsequently minimizing Eq. 1 and Eq. 2.
Following [4], Eq. 1 and Eq. 2 are reformulated as constrained
optimization problems using variable splitting, where parts of the
objective are decoupled by introducing equality constraints. These
constraints are incorporated by adding augmented Lagrangian terms
with additional split variables and Lagrange multipliers. The op-
timization consists of iteratively updating split variables, unknown
variables and Lagrange multipliers. The advantage of this algorithm
is that most of the variable updates have simple form and can be
efficiently computed. Furthermore, the number of FFT computations
needed is largely minimized.

Results: Figure 1 shows reconstructed phase and divergence pro-
files along the indicated lines in the noisy phase reference images
encoding two perpendicular in-plane velocity components.
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Fig. 1. Phase and divergence profiles from noise-less reference data (blue),
baseline (green) and divergence regularized reconstruction (red).

Discussion: In this work, an extension of the separate magnitude-
phase regularization framework for PC MRI has been developed and
evaluated on CFD data. It has been shown that the proposed method
is able to decrease the divergence of the reconstructed 3D velocity
field. Furthermore, by using the additional smoothness regularization
of the velocities, the method is also able to deal with phase wrapping.
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We will summarize the main approaches hat are used to image
through scattering media such as biological tissue and discuss their
limits in term of resolution, depth and signal to noise ratio. If for
shallow explorations one can rely on Optical Coherence Tomog-
raphy that uses singly backscattered photons, just like in acoustic
echography, for deeper exploration of biological tissues one has to
rely on diffuse photons. Diffuse Tomography is difficult, not only
because it is an ill posed problem but also because the body is highly
heterogeneous at various scales: resolution is thus practically limited
to about one third of the depth. In this context coupling optics and
acoustics using acousto-optics or photoacoustics was found useful
to get acoustic resolution (typically ¡ 1mm) at a few cm depths in
order to reveal an optical contrast. We will illustrate the principles
and some applications of these two techniques that are based on
fairly different physical basis. We know that wavefront engineering
has been very helpful to correct aberrations induced by atmosphere
turbulence (in optics) or body induced aberrations in acoustics. In
the same spirit we will point the progresses that have been achieved
these last years in term of wavefront control in the space domain
or in the time domain and the perspective that they open to image
through aberrating and scattering media and we will show examples
using time reversal photoacoustics. Finally we would like discussing
how these wavefront controls could help to revisit the field of optical
tomography.

54



Early detection of epileptic seizures by entropy-based methods
Davide Conigliaro∗, Paolo Manganotti†, Gloria Menegaz∗

∗ Dept. of Computer Science, University of Verona
† Department of Neurology, University of Verona

Abstract—This work presents a novel method for early detection of
epileptic seizures from EEG data. Seizure detection was accomplished
in three stages: multiresolution overcomplete decomposition by the à-
trous algorithm, feature extraction by computing power spectral density
and sample entropy values of sub-bands and detection by using z-test
and support vector machine (SVM). Results highlight large differences
between the subband sample entropy values for the epileptic and the
control subjects, respectively, reveling a substantial increase of such
parameter during the crisis. This enables high detection accuracy and
specificity especially in beta and gamma bands (16-125 Hz). The detection
performance of the proposed method was evaluated based on the ground
truth provided by the expert neurophysiologist as well as by objective
indexes when two crisis had been recorded.

I. INTRODUCTION

While automatic detection of epileptic crisis dates back to many
years, early detection with high temporal accuracy is still largely
under-investigated. The early detection of a seizure has many po-
tential benefits: it enables early warning allowing patients to take
actions to minimize their risk of injury and provides information
about the onset of the crisis which would greatly contribute to
understanding of the pathophysiological mechanisms that generate
seizures. In this study, we propose a new detection method based
on the multiresolution decomposition of the EEG signal using the
stationary wavelet transform (SWT). From the subbands, the sample
entropy, which provides information about the complexity of the
signal, and the power spectral density were extracted. Such features
were used for revealing the onset of the crisis using two different
detection modalities depending on the availability of a second crisis.
The proposed method was validated using clinical EEG data recorded
from five epileptic patients during both ictal and interictal periods.
Results show that the it was able to detect 100% of epileptic seizures
with very high accuracy and specificity.

II. METHODS

The EEGs were preprocessed by using the notch filter to remove
artifact caused by electrical power lines at 50 Hz and detrending was
performed on time windows of one second duration.

Then EEGs were analyzed using the SWT which ensures a time-
invariant representation. A five levels wavelet transform was per-
formed in oder to match the physiological subbands that are relevant
in epilepsy. In particular, this representation the detail coefficients D1,
D2, D3, D4, D5 represent the the from low to high frequencies bands
called delta δ , theta θ, alpha α, beta β and gamma γ. Daubechies
4 (DB4) [1] was chosen.

Sample entropy (SampEn) [2] values of the approximation and
detail coefficients were computed as features. SampEn is a useful
tool for investigating the dynamics of time series, that quantifies the
complexity of signals.

Define Bm(r) and Am(r) as:

Kν(r) =
1

N − ν

N−ν∑

i=1

Kν
i (r) (1)

where ν = m,m + 1 and K = A for ν = m + 1 and K = B
for ν = m. To give an intuition, Bm(r) and Am+1(r) represent the
probability that two sequences will match in m and m + 1 points,
respectively. The sample entropy is defined as

SampEn(m, r) = lim
N→∞

ln
Bm(r)

Am+1(r)
(2)

thus it represents the conditional probability that two sequences
remain within r of each other [2]. The parameters values were as
follows: window size m = 2, vector comparison distance r = 0.2σ
and window length N = 250 where σ is the standard deviation of
the EEG signal in resting state. The power spectral density for each
subbands was calculated by using the Welch method.

For seizure detection, two methods were used depending on the
number of seizures. In case of a single seizure, a z-test was used
to identify changes in the probability density function of the sample
entropy with respect to the resting state. Instead, the Support Vector
Machine (SVM) classification was used for repeated seizures. In the
first case, the main issue consisted in choosing the significance level
α due to the trade-off between the accuracy in temporal detection
(high value) and the specificity in the selection (low values). The
best value was estimated at 10−7 by inspection. In the second case,
the first seizure was used for training the model and the others to
test it. The two class weighted SVM was applied using radial basis
functions and five fold cross-validation to find the best values of
parameters C and γ. Finally the performance of the detection system
was evaluated and it validated with the help of the neurophysiologist.

III. RESULTS AND DISCUSSION

The algorithm was applied to clinical data collected at Verona
hospital. The dataset consisted of five EEG recordings from epileptic
patients, for a total of 7 hours and 37 minutes. The duration of
the seizures was varying between 8 and 120 sec. Twenty electrodes
positioned according to the international 10-20 system of electrode
placement were used. The EEG data were sampled at 250 Hz. Overall,
sensitivity is generally low. However, our detection system is able
to detect 100% of the seizures, with an average accuracy reaching
the 98% for 4 out of 5 patients. These results generally improve
by using the power spectral density as an additional feature and
SVM as classification tool. In conclusion, the proposed method has
the advantage of enabling the detection of seizures with very low
latency. The changes in the value of the sample entropy with respect
to seizure free conditions are subband and pathology dependent,
besides being subject to the inherent inter-subject variability thus
further investigation is needed for a complete validation.

REFERENCES

[1] Adeli H., et al., “Analysis of EEG records in an epileptic patient using
wavelet transform,” Journal of Neuroscience Methods, vol. 123, pp. 69–
87, 2003.

[2] Richman J. S., Moorman J. R., “Physiological time-series analysis using
approximate entropy and sample entropy,” Am J Physiol, vol. 278, pp.
2039–2049, 2000.

55



`0-deconvolution for compressive diffusion MRI
Alessandro Daducci∗, Anna Aurı́a∗, Jean-Philippe Thiran∗†, Yves Wiaux∗†‡
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Diffusion MRI is a well established imaging modality providing
a powerful way to non-invasively probe the structure of the white
matter. Despite the potential of the technique, the intrinsic long scan
times of these sequences have hampered their use in clinical practice.
For this reason, a wide variety of methods have been proposed
to shorten acquisition times. Among them, spherical deconvolution
approaches have gained a lot of interest for their ability to reliably
recover the intra-voxel distribution of neuronal fiber orientations
(FOD), represented as a function on the sphere x, with a relatively
small number of samples. To overcome the ill-posedness of deconvo-
lution, these methods make use of regularization schemes generally
based on the assumption that the FOD is sparse due to the small
number of fiber populations present in each voxel. On one hand,
the well-known Constrained Spherical Deconvolution [1] approach
(herein CSD) relies on an `2 prior which presents the drawback
of not promoting sparsity explicitly. On the other hand, convex
optimization methods have recently been advocated in a compressed
sensing perspective. A recent approach [2] (herein L2L1) relies on
some `1 minimization which unfortunately conflicts with the physical
constraint that the fiber compartments must sum to unity: ||x||1 = 1.

We here review a recent work [3] where we propose to further
exploit the versatility of compressed sensing and convex optimization
with the aim to characterize the FOD sparsity more optimally. We
re-formulate the spherical deconvolution problem as a constrained `0
minimization:

argmin
x≥0

||Φx− y||22 subject to ||x||0 ≤ k, (1)

where || · ||0 explicitly counts the number of nonzero coefficients and
k represents the expected number of fiber populations in a voxel. We
call this formulation Reweighted Sparse Deconvolution or RSD.
Surely, `0 problems as such are intractable. However, the reweighting
scheme proposed in [4] preserves the tractability of the problem by
sequentially solving weighted `1 problems of the form (1), where the
`0 norm is substituted by a weighted `1 norm defined as ||wα||1 =∑

i
wi |αi|, for positive weights wi and where i indexes vector

components. At each iteration, the weights are essentially set as the
inverse of the values of the solution of the previous problem, i.e.
w

(t)
i ≈ 1/x

(t−1)
i . At convergence, this set of weights makes the

weighted `1 norm independent of the precise value of the nonzero
components, thus mimicking the `0 norm behavior.

To test our reconstruction method, we compared it against CSD
and L2L1 on two human brain datasets acquired using standard
clinical protocols, respectively using 30 and 20 diffusion directions,
with b = 1000 s/mm2. The results are reported in the Figure.
Subplots A, B and C correspond to the dataset acquired using 30
samples. Even though the acquisition scheme used for this dataset is
not the setting where our numerical simulations (not reported here for
brevity) highlighted the most substantial differences between the three
approaches, important conclusions can be drawn. First, the ability of
both L2L1 (center plots) and RSD (righthand plots) to properly model

the isotropic compartment in voxels with full or partial contamination
with CSF is clearly visible. Moreover, comparing B and C we can
observe that RSD successfully differentiates gray matter (light gray
regions) from CSF voxels with pure isotropic and fast diffusion (very
bright areas), while L2L1 appears unable to distinguish them. The
yellow frames in the figures highlight the corona radiata, a well-
known region in the white matter containing challenging crossing
fibers. We observe that RSD clearly results in sharper and more
defined profiles than L2L1, whereas the improvements with respect
to CSD (lefthand plots) are confined only to few voxels.

The performances of the three methods sensibly change when
decreasing the acquisition samples to 20 (subplots D, E and F).
Reconstructions with RSD are definitely much better resolved than
both CSD and L2L1. In fact CSD clearly breaks, missing many fiber
compartments probably due to limitations in the internal Spherical
Harmonics representation. The same deterioration happens to L2L1,
whose reconstructions appear very blurred and noisy. These results
show that our proposed regularization scheme is indeed very effective
and that the improvements are most remarkable in a high q-space
under-sampling regime, thus opening the way for a further scan time
reduction of high angular resolution acquisitions closer to DTI.
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Fig. 1. History of diffusion-weighted imaging and sampling schemes that
affect the local reconstruction problem [1].

Abstract—In this presentation, state-of-the-art reconstruction tech-
niques will be presented for high angular resolution diffusion imaging
(HARDI). HARDI has been extensively studied in the last ten years. I
will cover the most important model-free and model-based techniques.
HARDI reconstruction is often the first step towards tractography.
Considering local HARDI reconstruction techniques and studying their
impact on the tractography results is a challenge in terms of validation.
Tons of parameters come into play and I will bring light on the open
questions and remaining challenges for the diffusion MRI community.

I. OVERVIEW OF THE PRESENTATION

Fig. 1 shows a short history and evolution of the strategies adopted
during the last two decades to perform diffusion-weighted imaging.
In this presentation, I will mostly focus on single-shell HARDI
samplings and more complexe sampling schemes (seen in e) to h)).
The sampling scheme directly affects the reconstruction technique.

HARDI techniques were originally developped to overcome limits
of diffusion tensor imaging (DTI) in crossing configurations. DTI
assumes a Gaussian diffusion process and by now, we know that this
is a wrong assumption in nearly 90% of white matter voxels [2].

In this talk, we will cover the model-free techniques family,
summarized in Fig. 2. These techniques generally do not assume a
physical model of compartments in the imaging voxels, as the model-
based techniques such as the one illustrated in Fig. 3.

All these HARDI techniques affect the tractography algorithms.
I will review the four classes of tracking techniques: deterministic,
probabilistic, geodesics, and global techniques. They all have advan-
tages and inconveniences. We will address the challenge of validation
of these techniques and show some results in clinical applications
(Fig. 4).

REFERENCES

[1] M. Descoteaux and C. Poupon, Diffusion-Weighted MRI, D. Belvic and
K. Belvic, Eds. In Comprehensive Biomedical Physics, Elsevier, 2012.

[2] B. Jeurissen, A. Leemans, J.-D. Tournier, D. K. Jones, and J. Sijbers,
“Investigating the prevalence of complex fiber configurations in white
matter tissue with diffusion magnetic resonance imaging,” Human Brain
Mapping, p. in press, 2012.

a) b) c) d)

True !ber orientation Di"usion tensor ADC Q-ball ODF

e) f ) g) h)

Q-ball ODF
(min-max normalized)

CSA-ODF Wavelet sharp-ODF FOD

Color value lookup :

0 1

Fig. 2. Model-free techniques. From the true fiber distribution and limitations
of the diffusion tensor, to different model-free techniques such apparent
diffusion coefficient (ADC) modeling, q-ball imaging and reconstruction
of the diffusion orientation distribution function (ODF) with and without
constant solid angle (CSA) consideration, to spherical wavelet techniques and
finally, spherical deconvolution techniques reconstructing the fiber orientation
distribution (FOD).

Fig. 3. Model-based techniques. Here, the figure shows a classical example
of a three compartment model: two compartments modeling the crossing fibers
separately and an isotropic compartment modeling free diffusion. This is also
called the ball and multi-stick model.

Fig. 4. Tracking techniques in a neurosurgical application. The red surface
is a tumor that deviate fiber tracts.
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Abstract—Neuronal modulations are fundamentally “noisy”, 

especially single units in the motor cortex where the baseline 
firing rates are low. Standard techniques such as event-triggered 
histograms extract the underlying neural response by averaging 
out inter-trial variability. However, histograms are not a compact 
representation. Data fitting can provide compactness, but may 
induce signal loss. We describe our implementation of Bayesian 
Adaptive Regression Splines (BARS) for extracting modulation 
features from hindlimb motor cortex during over-ground 
locomotion.  

I. INTRODUCTION 
EURAL modulation is an ambiguous term which has 
been used to describe a wide variety of features 

including: firing rate, inter-spike interval, ensemble 
covariance, local field potential, etc. Here we are specifically 
interested in single unit firing rates. However, action potential 
generation includes a stochastic element, i.e. given the same 
stimulus (desire) there is a randomness superimposed on 
neural response (command) [1, 2]. This inter-trial variability is 
greatly reduced in the Peri-Event Spike Histogram (PESH) 
that represents the average response from all trials [1, 2]. 
However, the variability only disappears as the number of 
trials included in the histogram goes to infinity; an impossible 
requirement for behavioral studies. We use fitting to further 
reduce inter-trial variability but preserve the underlying 
signals and find BARS superior to 5th order polynomials.  

II. ANIMAL MODEL AND RECORDINGS 
A cohort of female Lewis rats was cross-trained on multiple 

tasks; then implanted chronically with a 4x8 micro-wire array 
(TDT, Alachua FL) in layer V covering left hindlimb 
sensorimotor cortex. Kinematic and EMG activity was 
recorded (Vicon, Oxford UK) while rats walked overground 
on an elevated runway. Single units were identified via offline 
spike sorting [3] and the gait cycle defined as foot strike (0%), 
maxima of hindlimb angle (70%), and next foot strike (100%) 
for the right hindlimb. Firing times were converted to cycle 
percentage and a PESH was created over all gait cycles. 
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III. NEURAL MODULATION FITTING 
BARS [4] is well suited for neural data analysis because it 

captures rapid transitions in firing rates while incorporating 
the concept that neurons are noisy and usually change firing 
rate slowly [5]. Fig 1 shows a representative PESH and both 
fits. BARS has been used for sensory responses [6], here it is 
used for motor commands. Across six rats (n=282 neurons), 
the mean RMS fit errors were 4.8 and 3.5 Hz for 5th order 
polynomials and BARS fits respectively. Additionally, BARS 
had 53.5% higher energy (averaged over all frequencies), 
preserving high frequency information as expected. 

 
In summary, BARS better captures transitions in motor 

cortex modulations during locomotion; this sets the foundation 
for analyzing the relationship between the neural ensemble 
and muscular activity, which also contains sharp transitions. 
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Figure 1: Fitted PESH (n = 38 gait cycles) of neuronal modulation over gait 
cycle. BARS fitting better captures the rapid excitation at 20% and peak at 
35%. Shaded areas were included to avoid edge-effects in both fits.  

58



Applications of ultrasonic time-reversal in biomedical imaging
Mathias Fink∗

∗ Langevin Institute, ESPCI ParisTech, CNRS, 1 rue Jussieu, 75005, Paris, France

This talk will present an overview of the research conducted on
ultrasonic time-reversal methods applied to biomedical imaging.

We will first describe iterative time-reversal techniques that al-
low tracking and focusing ultrasonic waves on reflectors in tissues
(kidney stones, micro-calcifications). Because time reversal is also
able to correct for the strong distortions induced by the skull bone
on ultrasonic propagation, this adaptive focusing technique allows
non-invasive therapy of brain diseases and high resolution brain
neurostimulation. We will also show that time-reversal focusing does
not need the presence of bright reflectors but it can be achieved only
from the speckle noise generated by random distributions of non-
resolved scatterers. We will describe the applications of this concept
to correct distortions and aberrations in ultrasonic imaging.

In the second part of the talk we will describe the concept of
time-reversal processors to get ultrafast ultrasonic images with typical
frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic
imaging that have plenty medical applications. We will focus on
two of them: Quantitative Elasticity imaging of tissues by following
shear wave propagation and Ultrafast Doppler imaging that allows
ultrasonic functional imaging of the brain activity.
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Abstract—Riemannian geometry has become a popular mathematical
framework for the analysis of diffusion tensor images (DTI) in diffusion
weighted magnetic resonance imaging (DWMRI). If one declines from
the a priori constraint to model local anisotropic diffusion in terms of a
6-degrees-of-freedom rank-2 DTI tensor, then Riemann-Finsler geometry
appears to be the natural extension. As such it provides an interesting
alternative to the Riemannian rationale in the context of the various
high angular resolution diffusion imaging (HARDI) schemes proposed
in the literature. The main advantages of the proposed Riemann-Finsler
paradigm are its manifest incorporation of the DTI model as a limiting
case via a “correspondence principle” (operationalized in terms of a
vanishing Cartan tensor), and its direct connection to the physics of
DWMRI expressed by the (appropriately generalized) Stejskal-Tanner
equation and Bloch-Torrey equations furnished with a diffusion term.

I. INTRODUCTION

Riemann-Finsler geometry, already hinted upon by Riemann in
his “Habilitation” [1], is a generalization of Riemannian geometry.
The latter has found important applications in Maxwell theory and
Einstein’s theory of general relativity, contributing greatly to its
popularity. The general case was taken up by Finsler [2], Cartan
[3] (referring to it as “Finsler geometry”), and others [4], [5], [6].

Despite its great potential, Riemann-Finsler geometry has not
become nearly as popular as its Riemannian limit. To some extent
this may be explained by its rather mind-boggling technicalities
and heavy computational demands (due to the introduction of an
additional vectorial dimension extending the base manifold). Another
key factor is the still open challenge to find important “natural”
application areas for it, and to show its added value in these areas.
We conjecture that DWMRI could be one such application area. This
imaging modality plays an important role in the unravelment of the
human brain connectome, among others.

II. THEORY

The pivot of Riemann-Finsler geometry is a generalised notion of
length of a spatial curve C (“Hilbert’s invariant integral” [4]):

L (C) =

∫

C

F (x, dx) . (1)

The so-called Finsler function F (x, ξ) is positive definite for ξ 6=0,
and homogeneous of degree one in ξ, i.e. F (x, λξ)= |λ|F (x, ξ) for
all λ. In addition, the Riemann-Finsler metric tensor, defined as

gij(x, ξ) =
1

2

∂2F 2(x, ξ)

∂ξi∂ξj
, (2)

is positive definite. It is easy to see that (applying summation
convention)

F (x, ξ) =
√
gij(x, ξ)ξiξj . (3)

Riemann’s “quadratic restriction” pertains to the “mildly anisotropic”
case gij(x, ξ) = gij(x).

The non-Riemannian nature of the Riemann-Finsler manifold is
most concisely expressed in terms of the so-called Cartan tensor:

Cijk(x, ξ) =
1

4

∂3F 2(x, ξ)

∂ξi∂ξj∂ξk
. (4)

A dual, or Hamiltonian formulation rests upon the identity

gik(x, y)gkj(x, ξ) = δij , (5)

in which the first factor on the l.h.s. defines the dual Riemann-Finsler
metric tensor, and in which it is understood that

yi = gij(x, ξ)ξ
j or, equivalently, ξi = gij(x, y)yj . (6)

We stipulate that the dual Finsler function, H(x, y)≡F (x, ξ), governs
signal attenuation in DWMRI if, as with DTI, one relies on the
Stejskal-Tanner (mono-exponential decay, Gaussian diffusion) and
Bloch-Torrey equations with diffusion term [7], [8], [9], viz.

S(x, y) = S(x, 0) exp
(
−τH2(x, y)

)
. (7)

Here τ denotes a time constant related to the time ∆ between a pair
of balanced diffusion-sensitizing gradients Gi and pulse duration δ
(in Stejskal-Tanner’s scheme we have τ = ∆− δ/3), and

H(x, y) =
√
gij(x, y)yiyj , (8)

with “momentum” yi =γδGi given in terms of δ, Gi, and hydrogen
gyromagnetic ratio γ. The DTI rationale [10], [11] is based on the
(strong) simplification that the (y-independent) diffusion tensor image
Dij(x) can be identified with gij(x, y).

Further details can be found in a forthcoming publication [12].
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Abstract—One of the approaches in the analysis of brain diffusion
MRI data is to consider white matter as a Riemannian manifold, with a
metric given by the inverse of the diffusion tensor. Such a metric is used
for white matter tractography and connectivity analysis. Although this
choice of metric is heuristically justified it has not been derived from first
principles. We propose a modification of the metric tensor motivated by
the underlying mathematics of diffusion.

I. INTRODUCTION

A possible approach to study white matter from diffusion MRI is
to consider a geometric framework in which quantities of interest,
such as connectivity measures, are derived from a Riemannian
metric. In this way white matter is represented as a Riemannian
manifold, and candidate neural fibres are postulated to coincide with
geodesic curves. The common choice in the literature is to consider
a Riemannian metric given by the inverse of the diffusion tensor
D [1], [2]. The intuitive idea behind this choice is to transform
anisotropic diffusion in Euclidean space to (free) Brownian diffusion
in a curved Riemannian space. Brownian motion is characterized
by an infinitesimal diffusion generator L which can be written
as L = ∆ LB, with ∆ LB the Laplace-Beltrami operator for the
appropriate metric tensor g [3]. Such a generator is called an intrinsic
Laplacian. However, the usual choice of metric from an anisotropic
diffusion generator, g = D−1, does not lead to Brownian motion
in the corresponding curved space. We propose a slight modification
of the Riemannian metric in order to accomplish this. The question
of how to choose an appropriate metric has already been addressed
in [4], [5].

II. DISCREPANCY

Inhomogeneous anisotropic diffusion is commonly described by
the generator

L = ∂i(D
ij∂j) = Dij∂i∂j + (∂jD

ij)∂i (1)

where i, j = 1, 2, 3, Dij is the diffusion tensor, ∂i = ∂/∂xi, and in
which we use Einstein’s summation convention. A Riemannian metric
gij = Dij can be introduced, where Dij is the inverse diffusion
tensor.

The generator (1) can then be expressed as

L = 4g −
√
d

(
∂j

1√
d

)
Dij∂i (2)

where d is the determinant of the diffusion tensor Dij and 4g is the
Laplace-Beltrami operator

4g =
1√
g
∂j(
√
ggij∂i) (3)

Here, g = det gij . In our case, gij = Dij , we have

4g = Dij∂i∂j +
√
d ∂j

(
1√
d
Dij

)
∂i (4)

From Eq. (2) we see that the usual identification g = D−1 does not
lead to Brownian motion on the manifold (M, g) since the diffusion
generator L is not an intrinsic Laplacian. This is only the case when
the second term on the right-hand side of Eq. (2) vanishes, which
occurs for d = detDij constant. Clearly, this cannot be assumed in
general.

III. PROPOSAL

Consider now the diffusion generator given by

L̃ = d−1L = d−1Dij∂i∂j + d−1(∂jD
ij)∂i (5)

where we use the same notation as in section II. Again a Riemannian
metric can be introduced, namely, g̃ij = dDij . It can be shown that

L̃ = 4g̃ (6)

The generator (5) is therefore an intrinsic Laplacian, and the proposed
choice of metric results in Brownian motion on the manifold (M, g̃).

IV. DISCUSSION

We propose a new Riemannian metric in the context of diffu-
sion tensor imaging, motivated by first principles. In future work
experiments will be performed to assess whether our modified metric
leads to improved results for tractography and connectivity analysis
in comparison to the usual choice of metric. It would also be
very interesting to clarify the relation to other modified Riemannian
metrics, such as the one in [4].
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Single Trial ERP detection Exploiting Sparsity in Time
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Abstract—Sparsity of event related potentials (ERP) in time domain
is used to develop a single trial ERP detection method. It is assumed
that ERPs are deterministic whereas the ongoing EEG does not have
this property [1]. Using the recursive projected compressive sensing (Re-
ProCS) method [2] the electroencephalogram (EEG) data is decomposed
into a high dimensional, low rank component and a sparse component
which represents the ERPs. The method shows promising results on EEG
data which is synthetically generated using real EEG and ERP samples.

I. INTRODUCTION

Brain responses to low-probability stimuli (targets) inter-mixed
with high-probability stimuli (non-targets) differ in time domain such
that only target stimuli evoke a type of ERP called P300. Low signal
to noise ratio of the ERP signals is a major drawback for their
usability in systems which are based on single trial ERP detection.

II. METHOD

The problem is formulated as Mt = Lt + St, where the n × 1
vector Mt is the measurement vector at time t, Lt is low rank and
dense, and St is a sparse vector. In other words, it is assumed that
Lt = Uxt, where U and xt are respectively an unknown orthonormal
matrix and an uncorrelated sparse vector whose support is Nt. The
principal components (PC) matrix (the columns of Pt = (U)Nt ) span
Lt, i.e., Lt = Pt(xt)Nt .

The ReProCS method can separate correlated sparse data from low
rank subspace [2]. It is assumed that an initial estimate of the PCs
of Lt exists at time t, and the goal is to use the new measurement
vectors to estimate St, Lt, and hence update the PC matrix, P̂t.

If P̂t is an estimate of Pt at time t, and P̂t,⊥ is an orthogonal
complement of P̂t, we can rewrite Mt as Mt = P̂tαt+ P̂t,⊥βt+St,
where αt = P̂ ′tLt and βt = (P̂t,⊥)

′Lt. By projecting Mt into the
space spanned by (P̂t,⊥)

′, i.e., yt = (P̂t,⊥)
′Mt = (P̂t,⊥)

′St + βt,
most of the contribution of the low rank part of the measurement
vector is nullified. If ||βt||2 is small, the problem of estimating St

will convert to the classical noisy sparse reconstruction problem.
ERPs are always time locked to some stimuli which are known and

are captured simultaneously with the EEG signals. Windows of length
l (usually l < 1s) starting from the onset of each stimulus are cut to
represent the ERP samples. The EEG stream (n channels) is then cut
into windows of length w (w < l), and the data in each window is
vectorized to construct an (n.w.Fs)×1 vector Mt, where Fs is the
sampling frequency. The objective is to decompose Mt into Lt and
the sparse part St. Because the EEG part in the vectorized windows
is low rank, and ERPs and the ongoing EEG originate from different
sources, ReProCS can be utilized for separation. The support of the
sparse signal in each Mt is known a priori which is also used in the
sparse reconstruction phase. Assuming that T c

t is the complement of
the support of St at time t, the sparse signal can be recovered by
solving the following:

min
St

||(St)Tc
t
||1 subject to ||yt − (P̂t,⊥)

′St||2 ≤ ε. (1)

The proposed ERP detection method is summarized as follows:
1) Perform principal component analysis on [M1, ...,Mm]∗ and

select significant components as PC matrix, P̂t0 .

Fig. 1: The ERPs of channel PoZ recovered from applying the method to 8 channel
EEG data.

TABLE I: Averages and standard deviations of balanced accuracies (BA) re-
sulted from the proposed method on different simulated datasets. Scaling ratio =
(norm(targets)+norm(non-targets))/(2*norm(EEG)), where norm(x) = ||x||1|x| , |x| is the
cardinality of x.

Scaling ratio
0.09 0.11 0.14 0.16 0.18 0.21 0.23

BA (average) 0.61 0.78 0.83 0.87 0.89 0.91 0.92
BA (std) 0.03 0.02 0.02 0.03 0.02 0.02 0.02

2) P̂t,⊥ ← P̂t−1,⊥, update Tt using the timing of the simuli,
3) Estimate St using (1),
4) Estimate L̂t =Mt − Ŝt,
5) Update P̂t using Recursive PCA algorithm [2], go to step 2.

∗ To initialize Pt, there should not exist any ERP samples in Mi, ∀1 ≤ i ≤ m.

Each recovered sparse vector Ŝt is restructured in the matrix form
to represent the corresponding ERPs.

III. RESULTS

The proposed method was used to detect ERPs in synthetically
mixed EEG signals. For this, target and non-target ERPs were
extracted and averaged from EEG data recorded in a previous study
[3]. The ERPs were then scaled and mixed (with the ratio of 1:5)
in random sequence and added to EEG from a different dataset.
Figure 1 shows the result of the algorithm on one of the datasets.
To discriminate target and non-target ERPs, a threshold is defined as
thr = c∗ 1

K

∑K
k=1max(ek), where ek is the kth ERP, K is the total

number of ERPs and 1.2 ≤ c ≤ 1.4.
Balanced accuracies (0.5∗[ TP

TP+FN
+ TN

TN+FP
]) of the experiments

averaged over 20 runs are reported in Table 1. TP, FN, TN, and FP,
represent the number of true positives, false negatives, true negatives,
and false positives, respectively.

IV. CONCLUSION
Sparsity of the ERPs in time domain was used to develop a method

for discriminating target from non-target ERPs. The method applied
to synthetically mixed EEG data and the results were promising with
simple thresholding. Future work includes using classifiers in the
process flow and applying the method to real EEG signals.
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Since its advent, diffusion MRI has gained increasing interest for
its extraordinary ability to probe the micro-structure of tissues. In the
white matter this allows to infer the major axonal tracts and estimate
a map of these connections (brain network). The reliability of these
connectivity measures have been shown to be influenced not only by
the quality of acquired data, but also by the choices of (i) the acqui-
sition scheme [1], (ii) the local reconstruction model used to recover
the intra-voxel structure [2] and (iii) the fiber-tracking algorithm to
estimate the underlying fiber bundles [3]. The growing interest in
understanding the structural connectivity of the brain has significantly
boosted the development of these key aspects. In particular, in the
last decade a wide gamma of tractography algorithms have been
proposed. The simplest and most widely used are local approaches,
which reconstruct the tracts based on information from individual
or neighboring voxels, in a deterministic or stochastic vision of the
problem. Recently, global approaches have been introduced. They
tackle the estimation of the tracts as a global optimization problem
and have been shown to outperform local methods [4]. As these
techniques are potentially of high clinical value, it is very important
to characterize and understand in detail their behavior. In our work
we extend previous findings by investigating more systematically the
reproducibility of structural brain networks as estimated by diffusion
MRI, studying the influence of both the acquisition scheme and the
tractography approach (local or global) adopted.

Five subjects, all female and aged between 24 and 30 years,
underwent three consecutive MRI scanning sessions which included
1 high resolution T1-weighted acquisition and 3 different diffu-
sion sequences. Diffusion was acquired using classical acquisition
schemes: single shell at low b-value, or DTI (20 directions with b-
value 1000 s/mm2 and voxel size 2.2x2.2x3 mm), single shell at
medium b-value, or HARDI (64 directions with b-value 3000 s/mm2

and voxel size 2x2x3 mm) and dense cartesian sampling, or DSI (515
q-space samples with maximum b-value 8000 s/mm2 and voxel size
2.2x2.2x3 mm). The T1-weighted volume was used as anatomical
reference to segment the brain into white, gray and CSF using
FREESURFER. The cortical and subcortical parenchyma was further
subdivided into 82 regions (excluding the brain stem) according to
the Desikan-Killiany atlas. The estimated regions of interest (ROI)
were then linearly registered to the diffusion space using FSL.

Local tractography was performed using the standard streamline
algorithm and exploiting the diffusion profiles estimated in each voxel
to propagate the tracts. 32 seed points per voxel were randomly
generated and an angle threshold of 35◦ was adopted. We used
DIFFUSION TOOLKIT to reconstruct the intra-voxel fiber structure;
in particular, a single tensor was fitted from DTI data, classical Q-
Ball Imaging was used for HARDI scans and standard Diffusion
Spectrum Imaging was used for cartesian sampling acquisitions.
Global tractography was performed on the acquired raw signal
using the algorithm described by [5]. For each acquisition scheme
and tractography approach, the corresponding connectivity matrices
(brain networks) were estimated using the CONNECTOME MAPPER

by intersecting the reconstructed tracts with the cortical-subcortical

ROIs previously segmented. The connectivity architecture of the
estimated brain networks was characterized by means of standard
graph measures [6]: network density (D), global efficiency (E) and
average clustering coefficient (CC). To assess the reproducibility of
such measures we used the intraclass correlation coefficient (ICC).

Fig. 1. Reproducibility of three well-established graph measures (D, CC and
E) of the brain networks estimated by means of local and global tractography
and using different acquisition schemes (DTI, HARDI and DSI).

Overall, network measures appeared clearly most reproducible
when using global tractography. The reproducibility of DTI did
not sensibly change whether local or global tractography was used.
In case of local tracking, though, DTI seemed to produce more
reproducible results than HARDI and DSI. This is a central observa-
tion, as local tractography combined with DTI had been previously
associated with high robustness (and relatively poor sensitivity) [1].
On the other hand, however, the reproducibility of the network
measures dramatically improved when global tractography was used
in combination with HARDI or DSI, especially with respect to
density D and clustering coefficient CC where the best results were
reached (ICC ≈ 0.9). In particular, the poor performance of local
tracking with HARDI data might be caused by more sensitivity to
propagate local estimation errors in the intra-voxel fiber structure due
to more sensitivity to noise with only one shell at medium-high b-
value. The work reported here is part of a larger study involving
different institutions, where additional local models and tractography
approaches are being investigated with the aim to provide a more
comprehensive picture of the current processing pipelines panorama
used for connectivity analyses with diffusion MRI.
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Abstract—Quantitative susceptibility mapping in MRI is an ill-posed
problem. In this abstract a systematic evaluation of an l2 method and
an l1 total variation method (TV) is performed, using numerical and
experimental data and different morphology priors, which is shown
to make both methods more independent from their regularization
parameters.

Introduction. Phase imaging has been demonstrated to offer a
good contrast between and within brain tissues at 7T [1]. However,
phase imaging suffers from a non-local contrast variation which can
be overcome by calculating the underlying magnetic susceptibility
maps χ [2]. As this problem is ill-posed, many regularization methods
have been proposed over the past years [2], [3], [4], [5]. In this
abstract we do a thorough comparison of some of these methods.

Subjects and Methods. Two methodologies were implemented:
Firstly an the l2 method [2] uses a least-square conjugated algo-
rithm to calculate the minimum minχ(||W (F−1CFχ − δB)||22 +
β||MB/C∇χ||2) , where F−1CF represents the convolution with the
dipole kernel, δB is the measured field, W is a diagonal weighting
matrix inversely proportional to the noise standard deviation in the
measured field, β is a regularization parameter. The diagonal matrices
MB and MC enable local weighting based on prior information
from the magnitude (Mimage). They are respectively defined as
MB={0, if ∇Mimage > nσ; 1, if ∇Mimage ≤ nσ},
MC = {1/res, if ∇Mimage>nσ; 1/∇Mimage, if ∇Mimage≤nσ},
where σ is the noise standard deviation and n is a threshold parameter,
that indirectly defines the amount of random noise present in the prior
information masks.
Secondly, an l1 TV method [4] minimizes the TV-norm of χ subject
to the data constraint minχ||MB/C∇χ||1 s.t. ||W (F−1CFχ −
δB)||22 < ε , where ε can be measured from the data.

Simulations and Experiments. A synthetic field map was calcu-
lated using a numerical phantom with seven susceptibility compart-
ments with different susceptibility values. Random noise was added
to achieve an SNR of 10.
Experimental data were acquired using a 3D multi-echo gradient echo
sequence with the following acquisition parameters: TR = 49 ms, 5
echoes TE = (3.35-34.71) ms, BW = 260 Hz/Px, 1 mm isotropic
spacial acquisition. A 26 years old, healthy female volunteer was
scanned. The phase images were unwrapped, the background removal
was performed using the SHARP method [6].
Susceptibility maps were calculated with both methods while the
prior information parameter n as well as the parameters ε and β were
varied systematically. The quality of the reconstruction was measured
as the power of the difference to the original phantom (ground truth
for numerical data).

Results. Using the binary prior information, the optimum ε value
(εopt) remains constant throughout different n, while the optimum β
value (βopt) increases with the reduction of n, 1a),c). Both methods,
l2 and l1 TV, benefit from having the threshold of the binary prior

Fig. 1. first rows shows the reconstruction error dependence on regularization
parameters a) β and c) ε in the x-axis and threshold value n for the Binary Priors
and second row shows the quantitative susceptibility map with a),b) l2, c),d) l1 TV
method
information set at approximately twice the noise level as this gives
both, the lowest reconstruction error and the highest independence
from the regularization parameters ε and β used. The susceptibility
maps reconstructed with l2, l1 TV method using optimal parameters
are shown in 1b),d)

Discussion and Conclusion. The results show, that both methods
are effective at calculating susceptibility maps. The binary mask
outperformed the continuous mask on our simulations (data not
shown). Moreover, TV reconstructions are less dependent on the prior
information when noise has been correctly estimated. A selection
of the optimum mask makes both methods, l1 TV and l2, more
independent from their regularization parameters. The usage of low
thresholds for the binary prior information allows a good compromise
between: i) having as much morphological information as possible
and ii) applying the spatial constraint in the smoothness (l2 method)
or sparsity (l1 TV method) in enough contiguous areas in order
to penalize magic angle related artifacts. Therefore, including all
edge information, even if contaminated with background noise, is
more important than excluding noise and edge information from the
prior information. Using optimal parameters both methods show a
comparable quality of the reconstructed susceptibility maps 1b),d).
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Optical Coherent Imaging from Tissue to Molecule
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Imaging is key for medical diagnosis and provides new insights
for the life sciences. Tissue, cell and subcellular structures can all
be visualized using optical microscopy and so provide a variety of
information with high spatial resolution. Structural information com-
plemented by the functional information made possible by new op-
tical techniques like FourierDomain Optical Coherence Tomography
(FDOCT), Doppler Imaging and extended-focus Optical Coherence
Microscopy (xf-OCM) Dark field Coherence Microscopy (df-OCM),
and its latest extension photothermal optical lock-in Coherence Mi-
croscopy (poli-OCM) which allows extending these methods into the
cellular dimensions. We will present selected examples ranging from
retina blood flow, diabetes, Alzheimer’s disease to brain research with
an emphasis on the underlying optical concepts.
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Water diffusion MRI: what are we looking at?
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In the mid 1980s it was shown that water diffusion in the brain
could be imaged using MRI. During their random displacements
water molecules probe tissue structure at a microscopic scale, thus
providing unique information on the functional architecture of tissues.
A dramatic application of diffusion MRI has been brain ischemia,
following the discovery that water diffusion drops immediately after
the onset of an ischemic event, when brain cells undergo swelling
through cytotoxic edema. On the other hand, it was found that water
diffusion is anisotropic in white matter, because axon membranes
limit molecular movement perpendicularly to the fibers. This feature
can be exploited to map out the orientation in space of the white
matter tracks and image brain connections, as well as providing in-
formation on white track microstructure and integrity. Diffusion MRI
has also the potential to give clues on the cellular organization within
brain cortex on an individual basis, a step forward to segregating
brain areas at mesoscale level. More recently, it has been shown
that diffusion MRI could even be used to detect cortical activation.
The diffusion response very closely reflects neuronal activity, as
evidenced from electrophysiological recordings, and persists when the
BOLD response is abolished in the presence of drugs interfering with
the neurovascular coupling. This discovery represents a significant
breakthrough, allowing non invasive access to a direct physiological
marker of brain activation. This approach will bridge the gap between
invasive optical imaging techniques in neuronal cell cultures, and
current functional neuroimaging approaches in humans, which are
based on indirect and remote blood flow changes. The aim of this
presentation will be to review the general concepts, often overlooked
or forgotten, that led to diffusion MRI as we know it, and to retrace
the multidisciplinary and often complex evolution of the field since
its birth circa 1985.
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Abstract—Magnetic response of biological tissues, though weak, be-
comes measurable under the strong magnetic field provided by MRI
scanners. This interaction creates a unique tissue phase contrast which
can be further used to quantify tissue-specific magnetic susceptibility.
Susceptibility of white matter is found to be anisotropic and has to
be described by a tensor. Imaging susceptibility tensor may allow
visualization of brain connectivity in vivo.

I. INTRODUCTION

Magnetic response of biologic tissue is a fundamental process
involved in MRI. Until very recently, however, B0-field induced
magnetic field perturbation within tissues has largely been regarded
as a source of image artifacts. This treatment was warranted as no
good soft tissue contrast was readily available and large field offset
creates unwanted distortions. Recent methodological developments in
MRI signal processing and the availability of high-field magnets have
started to reveal some unique contrast and meaningful information
of tissue magnetic properties [1][2]. While higher field strength
increases the contrast-to-noise ratio, methodological advances have
been critical in quantifying minute field perturbations (∼ 10−2ppm)
induced by local susceptibility variations. Recent studies have sig-
nificantly improved our understanding of tissue magnetic property
with several interesting potential applications being reported. For
example, susceptibility may be a good indicator of iron stores in
certain brain regions and a good measure of myelination in brain
white matter; susceptibility may also provide a new window to white
matter architecture.

II. PHASE CONTRAST

Magnetic response is typically characterized by the quantity of
magnetic susceptibility, the extent to which a material is magnetized
by an applied magnetic field. Magnetic susceptibility, χ, is equal to
the ratio of the magnetization M to the applied magnetic field strength
H, i.e. χ = M/H. This definition of susceptibility is the volume
susceptibility or bulk susceptibility. In MRI images, it is the volume
susceptibility representing the magnetism (a dipole moment) per
voxel. Magnetic materials are classically classified as diamagnetic,
paramagnetic, or ferromagnetic on the basis of their susceptibilities.
Biological tissues can be either diamagnetic or paramagnetic depend-
ing on its molecular contents and microstructure. An overview of the
effect of susceptibility in MRI can be found in [3]. While MRI signal
originates from nuclear magnetization, the dominant magnetization
that contributes to bulk susceptibility originates from orbital electrons.

The most commonly used sequence for measuring susceptibility
is the spoiled-gradient-recalled-echo (SPGR or GRE) sequence. The
phase of GRE images gives a measure of local frequency offset which
in turn can be used to calculate susceptibility quantitatively. The
magnitude of a series of multi-echo GRE images is used to estimate
the T2* relaxation times.

III. QUANTITATIVE SUSCEPTIBILITY MAPPING

Although phase provides a unique contrast among a variety of
tissues, phase is not an intrinsic measure of tissue property due to

the long range dipole field distribution. Quantitative susceptibility
values can be calculated from background-phase removed frequency
shift maps by solving a linear equation. The relationship between
frequency shift ∆f (r) and the spatially distributed susceptibility χ(r)
is expressed in a Fourier transform as

∆f = F−1[χ(k)/3− k2z(k)χ(k)/k2]γµ0H0 (1)

Here χ(k) is the 3D Fourier transform of χ(r) and k is the spatial
frequency vector. F−1 is the inverse Fourier transform. k is the
spatial frequency vector; γ is the gyromagnetic ratio of water proton;
µ0 is the vacuum permeability; H0 is the magnitude of the applied
magnetic field; The equation can be inverted in the k-space. However,
when k2 = 3k2z (magic angle), the coefficient is zero prohibiting a
direct inversion. A simple strategy for avoiding dividing by zero is to
threshold the coefficients. Other strategies utilize regularization, mul-
tiple angle acquisition [4] and the LSQR algorithm [5]. Compressed
sensing is particularly useful for solving this ill-posed problem [6].

IV. SUSCEPTIBILITY TENSOR IMAGING

An interesting recent finding is the extensive susceptibility
anisotropy in brain white matter. The anisotropy existed in suscep-
tibility can be characterized by a second-order susceptibility tensor
[5]. The resonance frequency shift ∆f of each voxel is related to the
spatially distributed macroscopic susceptibility tensors as [5]

∆f = F−1[Ĥ
T
χ(k)Ĥ/3− kT Ĥ

kTχ(k)Ĥ
k2

]γµ0H0 (2)

Here, Ĥ is the unit directional vector of the applied magnetic field;
χ is a second-order (or rank-2) susceptibility tensor. A minimum of
6 measurements of ∆f at different orientations with respect to the
H0 field is needed. This requires rotation of the object or the field.
However, STI without rotation is also possible. STI may be used to
track white matter fibers in the brain in vivo and non-invasively.
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Rapid, Robust High Resolution MRI
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Magnetic Resonance Imaging (MRI) is a non-invasive imaging
modality. Unlike Computed Tomography (CT), MRI does not use
ionizing radiation. In addition, MRI provides a large number of flex-
ible contrast parameters. These provide excellent soft tissue contrast.
Since its invention more than 30 years ago, MRI has improved dra-
matically both in imaging quality and speed. This has revolutionized
the field of diagnostic medicine. Imaging speed is a major part of this
revolution as it is essential in many MRI applications. Improvements
in MRI hardware and imaging techniques have enabled faster data
collection, and hence faster imaging. However, we are currently at
the point where fundamental physical and physiological effects limit
our ability to simply encode data more quickly.

This fundamental limit has led many researchers to look for
methods to reduce the amount of acquired data without degrading
the image quality. These reduced sampling methods are based on the
fact that MRI data is redundant, so the underlying information may
be extracted from less measurements than traditionally considered
necessary. One of the most significant clinical impacts of reduced
sampling methods has been accomplished by parallel imaging with
multiple receiver channels. Imaging with multiple channels provides
more useful data per MRI acquisition, so fewer acquisitions are
needed per scan. Another source of redundancy that has been gaining
significant attention is the sparsity and compressibility of various MR
signals. This effort has been motivated by the recent introduction of
the theory of compressed sensing (CS).

Medical images, much like natural images taken by digital cameras
can be compressed many folds (for example using the popular JPEG
compression). The typical paradigm of compression is to first collect
all the necessary data and then compress it. The question that arises
is why is it necessary to collect so many measurements if most of the
data is non-important? Compressed sensing provides a way to address
this question. It is a new sampling theory for compressible signals
that allows sampling at rates much lower than the Nyquist-rate.
CS implicitly compresses data within the signal acquisition process
by obtaining fewer so-called ”incoherent measurements”. This is
accomplished through various non-uniform and pseudo-random k-
space sampling schemes. Images can be accurately reconstructed
from these measurements using non-linear recovery processes that
enforce data consistency with the measurements and compressibility
of the reconstruction. The practical result of CS in the context of
MRI is that MR images require much less data for reconstruction,
and hence can be scanned much faster.

Another model that has been gaining popularity is the so called
low-rank model in which data is reorganized into matrices that it
exhibit low-rank properties. This model turns out to be particularly
effective for dynamic imaging. Interestingly, parallel imaging re-
construction can also be posed as a low-rank reconstruction. This
approach yields highly robust and effective algorithms for parallel
imaging.

Beyond speed, sparsity and low-rank models provide additional
advantages. The redundancy can not only be used to reduce the
acquisition time. Instead, the redundancy can be used to provide
more robust acquisitions that mitigate with many sources of artifacts
in MRI such as: motion, relaxation, off-resonance and other data

corruptions. In these applications, incoherence is indeed the key to
success.

The talk will cover the basics of compressed sensing theory in the
context of MRI, incoherent sampling parallel imaging and low-rank
models. It will also cover current status and trends in using these
state of the art techniques for clinical applications. Finally, it will
discuss some of the major hurdles for broad clinical adoption.

68
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Abstract—High temporal resolution cardiac Cine is an important diag-
nostic tool to assess heart diastolic function. A significant drawback is that
in order to achieve high temporal resolution generally a long scan time is
needed [1-3]. However, by exploiting the random nature of retrospectively
triggered Cine, spatio-temporal sparsity, and by incorporating variable
density k-space sampling, high acceleration factors could be achieved
using compressed sensing reconstruction. In this work, mouse cardiac
Cine is demonstrated with a high temporal resolution (90 frames/cardiac
cycle) - i.e. time gap between two time frames = 1.2-1.5 ms ∼ 4 times
lower than TR - within a short acquisition time of 1-2 minutes.

I. METHODS

The scan was performed with a 9.4 T Bruker animal scanner. The
undersampled 90-frames Cine was acquired with a retrospectively
triggered FLASH sequence (matrix = 128x128, TR/TE = 4.7/2.35
ms). The retrospective triggering acquisition scheme satisfy random-
ness, i.e. high incoherence, which is important for CS reconstruction
as shown in Fig.1a. Weighted k-space Cartesian sampling (Fig.1c)
with scan time (1-2 min) was conducted, resulting in random and
weighted sampled k-t space (Fig.1d). By exploiting the sparsity in
the Cine-CMR imaging, accelerated Cine movies were reconstructed
with a non-linear compressed sensing algorithm [4]. Mathematically,
the following constrained optimization problem was solved:

min‖ϕ(m)‖1, subject to‖Fsm− y‖2 < ε,

Fig. 1. The retrospectively triggered self-gated acquisition scheme and the
resulting (b) k-t space after short acquisition time. (c) The weighted phase
encoding sampling scheme. (d) The resultant randomly weighted Cartesian
k-space.

II. RESULTS

In-vivo measurements using C57BL/6 male mice were performed.
After 1-2 min acquisition, ' 3X under-sampled k-t is acquired.
Fig.2b shows the CS reconstruction after 2 min acquisition. The
difference map for a time frame between the CS and gold standard
reconstruction is shown in Fig.2c. Numerically, the RMSe errors
were 0.0197 and 0.0206 for the 2 and 1.5 min CS reconstructions
respectively. Besides, left ventricular functional parameters derived
from the standard and the accelerated Cine movies were nearly
identical. The E/A ratios of accelerated CS reconstructions were
analyzed with respect to standard acquisition showing differences in
E/A centered on a bias of just 5 %.

Fig. 2. (a-c) Gold standard, CS reconstructions and the difference map

III. DISCUSSION AND CONCLUSION

By using retrospectively triggered acquisition, random acquisition
that satisfy incoherence is acheived. Besides, cardiac MR Cine with
high temporal resolution, where the time gap between two time
frames is much lower than TR, could be reconstructed. Finally, short
scan time and accelerated reconstructions without significant losses
in image quality and derived cardiac functional could be achieved by
exploiting the spatio-temporal sparsity and using CS reconstruction.
In this work, for a single slice, reconstructing 90 frames/cardiac cycle
in 1-2 minutes becomes possible. Thus multi-slice imaging becomes
feasible.
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Abstract—Diffusion-weighted magnetic resonance imaging (DW-MRI)
signals provide information about underlying tissue microstructure and
architecture. Recovery of such important information requires robust and
accurate computational methods. A number of practical issues (e.g., noise
and limitations in acquisition time and gradient strength, etc.) specific to
MRI acquisitions demand special computational tools tailored to address
these issues. One promising method is the representation of the signal
in a series expansion of basis functions whose properties are consistent
with general DWI signal profiles.

The function of a biological tissue is determined largely by its
structure. Processes such as activation, development, and aging as
well as pathological perturbations lead to alterations at microscopic
levels, which eventually influence the function of the tissue or organ.
As a consequence, a probe that provides information about the
microstructure of the tissue is expected to be of great value in
many fields of biological research. The non-invasive character of
MRI makes it particularly useful for diagnostic purposes, and an
indispensible tool for routine clinical practice.

Perhaps the most significant shortcoming of traditional MRI
acquisitions is its poor spatial resolution, which prohibits direct
visualization of tissue microstructure. Diffusive-attenuation of the
MR signal, e.g., achieved by applying pulsed field gradients (PFGs)
[1], can be exploited to obtain the desired sensitization to the
microscopic environment. This technique, whose inception precedes
the invention of MRI, can be used for microstructure elucidation
because distances traversed by randomly moving molecules during
the course of the MR signal acquisition are in the micrometer range.
Assuming that the microstructure does not vary drastically within
each voxel, diffusion in different parts of the voxel is expected to
be similar. Thus, there is no need to ‘localize’ or ‘isolate’ the signal
for one microscopic domain from the signal in another domain as
necessitated by traditional microscopy. Instead, we can collect a series
of diffusion-weighted signal values for the same macroscopic voxel
by varying the level of diffusion sensitization, and subsequently fit an
appropriate model, descriptive of the microstructure, to the acquired
signal profile. The end result yields the quantitative markers of tissue
microstructure.

Extracting such quantitative measures assumes two interdependent
steps: (i) a diffusion-weighted acquisition scheme that could generate
a series of signal values, and (ii) a biophysical model that relates
the microstructure to the diffusion sensitized signal. Neither of these
steps is rigid, and a particular choice has to be made based on the
characteristics of the tissue being examined. Most common approach
to generate a profile of signal values involves repeating measurements
by varying the PFGs’ strength and/or orientation, though variations in
other parameters of the pulse sequence [2] or employing alternative
sequences designed to yield the measured characteristics [3] could
greatly strengthen the ability to obtain the desired information.

Many biophysical models with ever increasing complexity have
been utilized in the literature. The parameters of such models are
linked to the DW-MRI signal via various statistical features of the
observed diffusional process. Among such features is the orientational

preference of diffusion, whose recovery has been instrumental in
visualizing the neural pathways between the anatomically —hence
functionally— connected regions of the central nervous system. Other
applications have revealed many different microstructural character-
istics of tissue such as cell dimensions, membrane permeability and
exchange, apparent fractal dimension as a measure of microscopic
complexity, and anisotropy in microscopic length scales.

Once the particular diffusion acquisition scheme and the biophys-
ical model have been established, the challenge is the recovery of
the microstructural features from the diffusion-attenuated signals.
Among the essential characteristics of the magnitude-valued diffusion
signal is that it is Rician distributed, which necessitates special signal
transformation, recovery and regularization techniques [4]. Since
acquisition time is limited, particularly in clinical settings, sampling is
typically very sparse, and accurate interpolation methods are needed.
This sampling typically occurs in the spatial frequency domain.
Due to limitations on the magnitude of the diffusion gradients,
the signal is always band-limited, and meaningful extrapolations
of the signal would be helpful for high-resolution reconstructions.
Other confounding factors include subject motion, and eddy current
effects, which all demand tools tailored to the specific features of
these factors. In recent years, we addressed some of these issues
by expressing the signal in a series expansion of Hermite functions
[5], and employed them in a number of problems to recover the
microstructural features of the specimen.

Given the enormous complexity of typical biological tissues,
numerous alternative measurement techniques, and availability of
different theoretical approaches all suggest that there are many
exciting questions that are yet to be asked. When complemented by
robust and accurate computational tools, structure elucidation using
diffusion-weighted MR techniques is expected to yield many novel
quantitative markers of tissue microstructure, which could improve
the diagnostic utility and specificity of diffusion-weighted MRI.
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[3] E. Özarslan, “Compartment shape anisotropy (CSA) revealed by double
pulsed field gradient MR.” J Magn Reson, vol. 199, no. 1, pp. 56–67,
2009. [Online]. Available: http://dx.doi.org/10.1016/j.jmr.2009.04.002
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Diffusion and resting-state imaging have demonstrated the po-
tential for non-invasive mapping of the structural and functional
connectivity of the human brain in health and disease. Nonetheless,
these methods face technical limitations arising from their limited
sensitivity and specificity to connections as well as their clinical
applicability. Specifically, the standard 2D EPI encoding used in these
methods can result in lengthy and inefficient acquisitions. In this
work, we ultilized Simultaneous Multi-Slice (SMS) imaging and Q-
space compressed sensing methodology to enabled a dramatic, order
of magnitude, speed up in image acquisition time while maintaining
image quality and fidelity. We further derived metrics to aids the per-
formance quantification of these acquisitions, which will help guide
in parameters selection. The technology developed in this work will
enable acquisition of high quality resting-state functional connectivity
mapping and Diffusion Spectrum Imaging (DSI) data in a clinically
relevant time frame, suitable for large Human Connectome clinical
studies.

In SMS imaging [1]–[5], multiple imaging slices are excited and
acquired simultaneously to accelerate the acquisition. Parallel imag-
ing technique, which utilizes information from multiple receiver coils,
is then used to untangle/unalias the simultaneously acquired imaging
slices. In such acquisition, the CAIPIRINHA method [2] can be
utilized to control the tangling/aliasing pattern of the imaging slices to
significantly improve the conditioning of the unaliasing problem. The
Blipped-CAIPI technique [6] is a variant of such technique that is
applicable to EPI, where the controlled alaising capability is achieved
by playing out an extra set of magnetic encoding gradients along the
slice direction during the EPI encoding. To reconstruct the Blipped-
CAIPI SMS dataset, a k-space based parallel imaging algorithm,
slice-GRAPPA, was created. With Blipped-CAIPI SMS technology,
the acquisition speed of diffusion imaging can be reduced by 3-4x
without significant noise amplification. For fMRI, this technology has
been use to accelerate the acquisition up to a factor of 8x or higher.

In this work, Compressed Sensing (CS) is used to further ac-
celerate the acquisition of Diffusion Spectrum Imaging (DSI). DSI
is a particularly time consuming (1 hr) type of diffusion imaging
acquisition that offers detailed information on complex distributions
of intravoxel fiber orientations. It is possible to accelerate DSI by sub-
Nyquist sampling of the q-space followed by nonlinear reconstruction
to estimate the diffusion probability density functions (pdfs) [7]. As
the performance of CS reconstruction depends strongly on the level
of sparsity in the selected transform space, a dictionary specifically
tailored for sparse representation of diffusion pdfs is used here to
yield higher fidelity results [8]. With this technique, we reduce the
scan time of whole brain DSI by 4x while retaining high image
quality. Further, we demonstrate that a dictionary trained using pdfs
from a single slice of a particular subject generalizes well to other
slices from the same subject, as well as to slices from another subject.

SMS imaging with Blipped-CAIPI acquisition and dictionary based
Q-space compressed sensing was combined to provide a 12 fold ac-

celerated DSI acquisition. The data for this acquisition was collected
from a healthy volunteer using on a novel 3T system equipped with
the AS302 Connectom gradient with Gmax=300 mT/m and Slew=200
T/m/s, whose strong gradients are particularly suited for DSI. The
figure below illustrates: A. Blipped-CAIPI acquisition, B. q-space
compressed sensing, C. Connectome gradients, and D. tractography
result from a 12 fold accelerated 4 minute DSI acquisition.

As part of the development of these new acquisition techniques,
new metrics to quantify the performance and characterize artifacts
have also been developed to aid in understanding the speed vs. data
quality tradeoff of these acquisitions. These new metrics include
signal leakage measures, spurious noise correlation measure, and
white matter tract bundles quantification.
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Abstract—In this abstract, we present a general framework of dictio-
nary learning for data living on Riemannian manifolds and apply it to
the problem of EAP reconstruction from diffusion MRI.

I. INTRODUCTION

Dictionary learning, which seeks to find a collection of atoms
for sparse representation of the input data, has been widely used
in image recognition, classification and restoration (e.g., [1]). Under
this model, each data point is assumed to be generated linearly using
only a small number of atoms, and this linear sparsity assumption
is responsible for much of its generalization power and success.
However, the underlying linear process requires that the data points
as well as the atoms be treated as vectors in some vector space
Rd, and the dictionary is learned from the input data using only
the vector space structure (and its associated inner product). For
many applications in medical image analysis that involve data points
belonging to some known Riemannian manifolds such as the space
of symmetric positive-definite matrices, hyperspheres for square-root
densities, Stiefel and Grassmann manifolds, etc., the existing extrinsic
approaches that ignore the intrinsic structure implied by the data are
clearly inadequate. To remedy this deficiency and inadequacy, we
present a generalization to incorporate intrinsic geometry implied by
the input data.

The applicability of existing dictionary learning methods to solve
medical imaging problems that have to deal with manifold-valued
data can pose two thorny issues. First, as a prerequisite, the data
manifold must admit an embedding into some Rd in order to be
able to apply the existing dictionary learning methods. However,
for most manifolds, such as Grassmann and Stiefel manifolds, there
simply does not exist known canonical embedding into Rd (or such
embedding is difficult to compute). Second, even in the case when
the existing method can be applied, due to their extrinsic viewpoint,
important intrinsic properties of the data may not be represented in
the dictionary. This can be illustrated by a simple example that it is
possible that two points x, y on the manifoldM have a large geodesic
distance separating them but under the embedding i : M → Rd,
i(x), i(y) has a small distance in Rd. Therefore, sparse coding using
dictionary learned in Rd is likely to code i(x), i(y) (and hence x, y)
using the same set of atoms with similar coefficients. Clearly, this will
be undesirable if the applications require tasks such as classification
and clustering, for which one would prefer the sparse coding to reflect
some degree of actual similarity (i.e., geodesic distance) between the
two samples x, y.

While the above example provides the motivation for seeking
an extension to the existing dictionary learning framework to the
more general Riemannain setting, it is by no means obvious how
the extension should be correctly formulated. Let M denote the
Riemannian manifold on which a collection of data points x1, · · · , xn
are given. At the minimum, the goal of dictionary learning on M is

to compute a collection of atoms {a1, · · · , am} ⊂ M, also points
on M, such that each data point xi can be generated using only a
small number of atoms (sparsity). One immediate technical hurdle
that any satisfactory generalization (to the Euclidean setting) needs
to overcome is the lack of a global linear structure that will allow
the data to be generated from the atoms. Instead, the Riemannian
geometry provides only local linear structures through the Rieman-
nian exponential and logarithm [2] maps, and by moving to the more
general Riemannian setting, we essentially trade the unique global
linear structure with infinitely many local linear structures, which
is the main source of the various technical difficulties present in
our generalization. However, this diversity of linear structures also
provides us with an opportunity to formulate the dictionary learning
using data specific approach.

Specifically, the sparse coding of a data xi with respect to the
atoms {a1, · · · , am} ⊂ M is obtained by minimizing

min
wi

‖
m∑

j=1

wij logxi
aj‖2xi

+ Sp(wi), (1)

with the important affine constraint that
∑m

j=1
wij = 1, where

wi = (wi1, . . . , wim)T . That is, we are using the Riemannian
exponential and logarithm maps at each data point x to define
the generative process, and the sparse approximation of a given
data point is first computed in its tangent space TxM and then
realized onM by applying the exponential map. We remark that this
formulation is entirely coordinate-independent since each logxi

aj is
coordinate-independent, and Equation 1 can be minimized using any
local chart and its associated basis for TxiM (with a result that
will be independent of these choices). Furthermore, a subspace S
in a given coordinate system is represented as an affine subspace
in a different coordinate system with a different origin. In short,
Equation 1 is the direct generalization of linear sparsity condition
with the exception that now the origin has been moved to the data
point xi. Computationally, the resulting optimization problem using
Equation 1 can be effectively minimized.

We validate the proposed method by applying it to the ensemble
average propagator (EAP) reconstruction problem from HARDI data
sets. Preliminary results demonstrate that the dictionary learned using
the proposed method can provide real improvements when compared
with other direct approaches.
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Abstract—Traditional MRI favors homogeneous image intensity, reso-
lution and SNR. More resent approaches offer faster image acquisition,
but sacrifice intensity homogeneity and simple noise statistics. Using
non-linear spatial encoding magnetic fields (SEMs) allows one to gain
new degrees of freedom to further accelerate imaging with additional
advantages in local spatial resolution and localized signal selection. In this
contribution we review recent advances in MR imaging using non-linear
encoding fields and indicate potential future directions and applications.

Traditional spatial selection and encoding MRI is bound to planes
and simple box-like shapes, as rectangles and parallelepipeds. Image
encoding and reconstruction is usually done on a Cartesian grid with a
homogeneous spatial resolution, with the measurement timetypically
proportional to the number of lines in the image. Quite contrary the
anatomy of living beings tends to be curvilinear, ranging from round
or elliptic shapes, as human head or trunk, to almost fractalsurfaces
as for brain or kidney cortex.

In the early days of MRI as single-channel volume receiver coils
were considered state-of-the-art and images were recovered by an
application of the Fourier transform it was the homogeneityof the
image intensity and contrast, which were considered to be ofthe
primary value for image quality. Also further quality parameters
as signal-to-noise ratio (SNR) or spatial resolution were trivial
to characterize. Noise of MR images was spatially ans spectrally
homogeneous with a simple Gaussian statistics. Similarly,image
resolution had a global character and could be characterized with a
single point spread function. The only disadvantage was theimaging
speed, as the Fourier encoding process is sequential by nature.

The classical period in MRI has came to its end in late 1990th with
the advent of parallel imaging [1]. It was discovered that multiple
localized receiver coils with spatially different sensitivities were able
to provide additional information on signal localization and thus
allow skipping certain steps of the sequential Fourier encoding. Image
reconstruction now requires additional steps (e.g. matrixinversion),
therefore image noise in parallel imaging is no longer homogeneous.
In fact, image intensity delivered by a typical receiver coil array
has a tendency to increase towards the periphery of the object,
therefore image SNR in the majority of MR images acquired these
days (e.g. with coil arrays and parallel imaging) is rather difficult
to characterize. More resent imaging concepts based on randomized
sampling and compressed sensing reconstruction [2] have even more
complex behavior of image intensity, contrast, features and noise.

In an effort to trade homogeneous spatial resolution for focal
advantages in localized imaging in terms of performance andres-
olution, we have introduced in 2007 a PatLoc-concept (=parallel
imaging with localized gradients) [3]. Spatial localization in PatLoc is
effected by means of local, non-linear, non-bijective spatial encoding
magnetic fields (SEMs). Gradients of these fields are not necessary
orthogonal to each other and the number of fields used may exceed
the dimensionality of the encoding problem, e.g. 3 or 4 fieldsmay
be applied to encode a 2D image [4]. Non-unique encoding, which

appears as non-linear aliasing in image domain is resolved by the
receiver array processing similar to the established parallel imaging
methodology [5]. In contrast to the traditional parallel imaging,
through changing the encoding field geometry the spatial aliasing
pattern can potentially be optimized to match the receiver array
unwrapping ability [6].

PatLoc concept holds a great promise for more efficient MR imag-
ing, which has been realized by a number of research groups, who
are now entering the field. Trajectory design in multiple dimensions
[4], [6] and sampling strategies taking into account a higher number
of SEMs than the actual dimensionality of the encoding problem [7]
are the areas of the most active research.

Noteworthy that the PatLoc concept does not necessary require
the signal readout to occur under the action of non-linear gradients.
Along these lines we have demonstrated a possibility to further
accelerate parallel imaging by applying nonlinear phase modulation
followed by a Cartesian k-space acquisition using linear gradients.
Alternatively, non-linear phase pre-modulation may be employed for
signal selection during the subsequent readout with lineargradients
[8]. Furthermore, non-linear gradients offer interestingoptions for
signal excitation in curved coordinates [9].

MR imaging with non-linear spatial encoding magnetic fields
allows one to gain additional degrees of freedom to accelerate data
acquisition and most fully exploit both the encoding capabilities of
the available receiver coil arrays and the redundancies in the image,
with additional advantages in local spatial resolution andlocalized
signal selection. These degrees of freedom may eventually make it
possible to adapt MRI encoding to the underlying anatomy formore
efficient imaging of the structure and function in vivo.
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Abstract—Brain oscillations are very powerful descriptors of both
physiological and pathological brain states. In general, EEG signals
consist of complex mixtures of components whose characterization
provides reliable information about the neuronal activity. This study
is inspired to the consensus matching pursuit (CMP) representation
and proposes an effective method for the detection and modeling of
interictal prototypical signal patterns in temporal lobe epilepsy. CMP
allows accounting for inter-trial variability in temporal jitter, frequency
and number of oscillations. In this work, we propose to generalize the
approach and exploit the resulting spike representation for automatic
interictal spike detection. Performance was evaluated on both synthetic
and real high density EEG signals. Results show high sensitivity and
specificty in spike detection as well as an accurate separation in the
transient and oscillation components.

I. INTRODUCTION

The purpose of this work is to model interictal waveforms (IW)
in temporal lobe epilepsy for both characterization and detection.
The target signals feature a prototypical shape consisting of a spike
and a slow oscillation. Such two components hold different physi-
ological meaning calling for effective methods for their respective
detection and characterization. The spectral overlap between them
makes the use of Fourier and classical multi resolution representations
unsuitable to the purpose. Consensus matching pursuit (CMP) was
recently introduced by Benar et al.[1], [2]. While good results were
obtained on simulated signals, a clear advantage was not proved on
real signals. However, only single channel recordings on one patient
who was diagnosed a temporal lobe epilepsy was considered, calling
for a more complete characterization of the method. In this work,
the CMP approach was generalized by introducing an additional
parameter for the synthesis of the dictionary waveforms, namely the
phase of the atoms, leading to what we call Phase Sensitive-CMP
(PS-CMP). Additionally, the resulting representation was exploited
for automatic detection based on support vector machines (SVM)
enabling the accurate signal decoding into the transient and slow
oscillation components as well as the effective detection of the spikes
on the whole set of channels.

II. METHODS

MP is a signal approximation method where a signal is represented
by linear combination of atoms chosen in a dictionary D = {Ψ~p}
according to an iterative projection procedure. At each iteration, the
algorithm selects the element of the dictionary, i.e. the atom Ψ~pi(t)
that minimizes the residual error, which becomes the target signal
for the next iteration. In this way the atom that is selected at step
i only depends on the current realization k. CMP overcomes this
limitation by making such a choice a function of both the realization
and the distribution of the parameters ~pi over the whole set of
realization (e.g. the training set). This is accomplished by estimating
the probability density function of the underlying stochastic process
in a non-parametric manner, following the weighted voting procedure
as in [1].

In the proposed method, the parameters were first estimated on the
dataset and then used for building the dictionary. This allows shaping
the dictionary to the case study without loosing its generalization

capabilities. Furthermore, CMP was reinterpreted in the framework
of pattern recognition. Firsy, the prototypical waveforms (PWs) are
constructed relying on PS-CMP. This allows the training of the
classifier, which learns the properties of the target signals. Then, the
PWs are used for guiding the recognition process in the PS-CMP
framework. The model provides the description of the spike and the
oscillation in terms of the proximity to the consensus atoms that
were identified during the first step in two successive iterations of
the MP algorithm. The pipeline was applied to both simulated and
real hdEEG data obtained from six patients affected by right temporal
lobe epilepsy. Since only one category of signals was targeted and
modeled, the one class SVM classifier was used for the detection.
The two features chosen for the classification were the magnitude of
the first projection coefficient and the goodness of fit (GOF) of the
reconstruction.

III. RESULTS AND DISCUSSION

Due to space limitations here we focus on hdEEG data of one
patient. The training set consisted of 28 spikes that had been manually
selected by the neurophysiologist within one channel on the right tem-
poral lobe. Two different testing sets were considered, respectively
consisting of 60 trials extracted from a single channel (out of which
30 representing an IW), and 256 trials taken from all the hdEEG
channels over a 500 ms time interval. Out of these, a subset of 60
trials were selected and manually labelled by an expert neurologist to
be used as the ground truth. In the first case, all the IWs were correctly
identified by the classifier. In the second, very good performance was
reached in terms of specificity (spec = 1), selectivity (sel = 1)
and sensitivity (sens = 0.88). Figure1 shows the topology of the
IW distribution on the scalp, highlighting the involvement of the
right temporal lobe as expected. Overall, the method provided good
performance in both IW modeling and detection on both synthetic
and real data.

Fig. 1. Topology of IWs classification. Blue: detected IW.
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